參考文獻 |
[1] 工研院能資所遙測研究室, URL: http://rs.erl.itri.org.tw/.
[2] 中華民國航空測量及遙感探測學會, URL: http://www.csprs.org.tw/.
[3] 行政院國家太空計劃室籌備處, URL: http://www.nspo.gov.tw/.
[4] 國立中央大學太空及遙測研究中心, URL: http://www.csrsr.ncu.edu.tw/, http://www.csrsr.org.tw/.
[5] 曾忠一著,大氣衛星遙測學,渤海堂
[6] 林文賜, 周天穎, 林昭遠 “應用監督性類神經網路於衛星影像分類技術之探討,” 航測及遙測學刊 第六卷 第一期 第41-58頁 民國90年4月
[7] 黃凱易, “逐層分割群聚法及反覆移動均值群聚法於地覆非監督式分類之比較,” 航測及遙測學刊 第五卷 第三期 第43-55頁 民國89年9月
[8] S. Abe and M.-S. Lan, “A method for fuzzy rules extraction directly from numerical data and its application to pattern classification,” IEEE Trans. on Fuzzy Systems, vol. 3, no. 1, pp. 18-28, 1995.
[9] ─, “Fuzzy rules extraction directly from numerical data for function approximation,” IEEE Trans. Syst., Man, Cybern., vol. 25, no. 1, pp. 119-129, Jan. 1995.
[10] A. Baraldi and F. Parmiggiani, “A neural network for unsupervised categorization of multivalued input patterns: An application to satellite image clustering,” IEEE Trans. Geosci. Remote Sensing, vol. 33, no. 2, March 1995.
[11] A. M. Bensaid, L. O. Hall, J. C. Bezdek, L. P. Clarke, M. L. Silbiger, J. A. Arrington, and R. F. Murtagh, “Validity-guided (Re)Clustering with Applications to Image Segmentation ,” IEEE Trans. on Fuzzy Systems, vol 4, no. 2, pp. 112-123, May 1996.
[12] H. Bischof, W. Schneider, and A. J. Pinz, “Multispectral classification of landsat-images using neural networks,” IEEE Trans. Geosci. Remote Sensing, vol. 30, no. 3, pp.482-489, May 1992.
[13] M. Blume, D. A. Van-Blerkom, and S. C. Esener, “Fuzzy ARTMAP modification for intersecting class distribution,” World Congress on Neural Networks, Int. Neural Network Society 1996 Annual Meeting, Lawrence Erlbaum Assoc, USA, pp. 250-255, 1996.
[14] J. Bryant, “On the clustering of multidimensional pictorial data,” Pattern Recognit., vol. 67, pp. 115-125, 1979.
[15] G. A. Carpenter and N. Markuzon, “ARTMAP-IC and medical diagnosis: instance counting and inconsistent cases,” Neural Networks, vol. 11, no.2, pp.323-336, 1998.
[16] G. A. Carpenter and S. Grossberg, “A self-organizing neural network for supervised learning, recognition, and prediction,” IEEE Communications Msg., pp. 38-49, Sep. 1992.
[17] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “A neural network realization of fuzzy ART,” Tech. Rep, CAS/CNS-TR-91-021, Boston, MA: Boston University, 1991.
[18] G. A. Carpenter, S. Grossberg, and D.B. Rosen, “ART2-A: An adaptive resonance algorithm for rapid category learning and recognition,” Neural Networks, vol. 4, pp. 493-504, 1991.
[19] G. A. Carpenter, S. Grossberg, and J. H. Reynolds, “ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network,” Neural Networks, vol. 4, pp. 565-588. 1991.
[20] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen, “Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps,” IEEE Trans. on Neural Networks, vol. 3, pp. 698-713, 1992.
[21] P. L. Chee and R. F. Harrison, “Modified fuzzy ARTMAP approaches Bayes’ optimal classification rates: an empirical demonstration,” Neural Networks, vol. 10, no. 4, pp. 755-774, 1997.
[22] S. W. Chen, C. F. Chen, M. S. Chen, C. Y. Fang, and K. E. Chang, “Neural-fuzzy classification for segmentation of remotely sensed images,” IEEE Trans. Signal Processing, vol. 45, no. 11, pp. 2639-2654, Nov. 1997.
[23] B. Chen and L. L. Hoberock, “ A fuzzy neural network architecture for fuzzy control and classification,” IEEE Int. Conf. on Neural Networks, vol. 2, pp. 1168-1173, New York, USA, 1996.
[24] G. B. Coleman and H. C. Andrews, “Image segmentation by clustering,” Proc. IEEE, vol. 67, pp. 773-785, 1979.
[25] I. Dagher, M. Geogiopoulos, G. L. Heileman, and G. Bebis, “Fuzzy ARTVar: an improved fuzzy ARTMAP algorithm,” IEEE Int. Joint Conf. on Neural Networks Proce.s. IEEE World Congress on Computational Intelligence, vol. 3, pp. 1688-1693, New York, USA, 1998.
[26] P. B. G. Dammert, J. I. H. Askne, and S. Kuhlmann, “Unsupervised segmentation of multitemporal interferometric SAR images,” IEEE Trans. Geosci. Remote Sensing, vol. 37, no. 5, Sep 1999.
[27] R. O. Duda and P. E. Hart, Pattern Classification and Science Analysis, New York: Wiley, 1973.
[28] K. S. Fu, “Pattern in remote sensing of the earth’s resources─invited paper,” IEEE Trans. Geosci. Electron., vol. GE-14, pp. 10-18, 1976.
[29] B. Gabrys, A. Bargiela, " General fuzzy min-max neural network for clustering and classification," IEEE Trans. on Neural Networks, vol. 11, pp. 769-783, 2000.
[30] P. Gong, D. J. Marceau, and P. J. Howarth, “A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data,” Remote Sens. Environ., vol. 40, pp. 137-151, May 1992.
[31] R. M. Haralick, “Statistical and structural approaches to texture,” in Proc. IEEE, vol. 67, pp. 786-804, May 1979.
[32] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Texture features for image classification,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp. 610-621, 1973.
[33] M. J. Healy and T. P. Caudell, “Guaranteed two-pass convergence for supervised and inferential learning,” IEEE Trans. on Neural Networks, vol. 9, no. 1, pp. 195-204, 1998.
[34] L. T. Hsien and J. L. Shie, “A neural network model for spoken word recognition,” IEEE Int. Conf. on System, Man, and Cybernetics, Computational Cybernetics and Simulation, , vol. 5, pp. 4029-4034, New York, USA, 1997.
[35] A. Jain and D. Zongker, “Feature selection: Evaluation, application, and small sample performance,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19, pp. 153-158, Feb 1997.
[36] J. R. Jensen, Introductory Digit Image Processing-A Remote Sensing Perspective, Prentice-Hall, Inc., New Jersey. 1996.
[37] B. W. Jervis, T. Garcia, and E. P. Giahnakis, “Probabilistic Simplified Fuzzy ARTMAP (PSFAM),” IEE Proc.-Sci. Meas. Technol., vol. 146, no. 4, pp. 165-169,July 1999.
[38] T. Kasuba, “Simplified Fuzzy Adaptive Resonance Theory Map”, AI Expert, pp. 18-25, Nov 1993.
[39] J. M. Keller, M. R. Gray and J. A. Givens, “A fuzzy k-nearest neighbor algorithm,” IEEE Trans. Syst., Man, Cybern., vol. 15, no. 4, pp.258-263, 1985. Reprinted in Dasarthy, B. V., “Nearest neighbor pattern classification techniques,” IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 276-284, 1991.
[40] K. S. Kuo, R. M. Welch, and S. K. Sengupta, “Structural and textural characteristic of cirrus clouds observed using high spatial resolution Landsat imagery,” J. Appl. Meteorol., vol. 27, pp. 1242-1260, Aug. 1988.
[41] K. J. Lang, and M. J. Witbrock, “Learning to tell two spirals apart,” in Proc. 1998 Connectionist Models Summer School, pp. 52-59, 1989.
[42] C. -T. Lin, Y. -C. Lee, and H. -C. Pu, “Satellite sensor image classification using cascaded architecture of neural fuzzy network,” IEEE Trans. Geosci. Remote Sensing, vol. 38, no. 2, pp.1033-1043, March 2000.
[43] A. Malkani and C. A. Vassiadis, “Parallel implementation of the fuzzy ARTMAP neural network paradigm on a hyercube,” Expert Systems, vol. 12, no. 1, pp. 39-53, 1995.
[44] S. Marriott and R. F. Harrison, “A modified fuzzy ARTMAP architecture for the approximation of noisy mappings,” Neural Networks, vol. 8, no. 4, pp. 619-641,1995.
[45] D. Michie, D. J. Spieglhater, and C. C. Taylor, “Machine learning, Neural and statistical classsifiction,” Ellis Horwood Series in Artifical Intellignce, England, 1994.
[46] B. Moore, “ART 1 and pattern clustering,” in Proc. 1988 Connectionist Models Summer School, pp. 174-185, 1989.
[47] P. M. Murphy and D.W. Aha. “Uci repository of machine learning databases,” 1991. Irvine, University of California, Department of Information and Computer Science, Anonymous, FTP: /pub/machine-learning-database on ics.uci.edu.
[48] D. R. Peddle and S. E. Franklin, “Image texture processing and data in tegration for surface pattern discrminiation,” Photogramm. Eng. Remote Sensing, vol. 57, no. 4, pp.413-420, 1991.
[49] J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis: An Introduction, Springer-Verlag Berlin Heidelberg, Third Edition, 1993.
[50] A. Rizzi, F. M. F. Mascioli, G. Martinelli, "Generalized min-max classifier," Proc. FUZZ-IEEE 2000, vol. 1, pp. 36-41, San Antonio, TX, May 2000.
[51] S. L. Salzberg, Learning with nested generalized exemplars, Ph.D. Thesis (Technical Report TR-14-89), Dept. of Computer Science, Harvard University, Cambridge, MA, 1989.
[52] ─, “Learning with nested generalized exemplars,” Hingham, MA: Kluwer Academic, 1990.
[53] ─, “A nearest hyperrectangle learning method,” Machine Learning, vol. 6, pp. 251-276, 1991.
[54] S. L. Salzberg foreword by W. A. Woods, Learning with nested generalized exemplars, Kluwer Academic, 1990.
[55] P. Simpson, “Fuzzy min-max neural networks,” in Proc. 1991 Int. Joint Conf. Neural Networks, pp. 1658-1669, Singapore, Nov. 18-21, 1991.
[56] ─, “Fuzzy min-max neural networks─Part 1: Classification,” IEEE Trans. on Neural Networks, vol. 3, no. 5, pp.776-786, Sept. 1992.
[57] ─, “Fuzzy min-max neural networks─Part 2: Clustering,” IEEE Trams. Fuzzy Syst., vol. 1, no. 32-45, Feb. 1993.
[58] N. Srinicasa, “Learning and generalization of noisy mapping using a modified PROBART neural network,” IEEE Trans. Sign Proc., vol. 45, no. 10, pp. 2533-2550, 1997.
[59] M. C. Su, "Use of neural networks as medical diagnosis expert systems," Computers in Biology and Medicine, vol. 24, no. 6, pp. 419-429, 1994.
[60] M. C. Su, C. T. Hsieh, and C. C. Chin, “A neuro-fuzzy approach to speech recognition without time alignment,” Fuzzy Sets and Systems, vol. 98, no. 1, pp. 33-41, 1998.
[61] M. C. Su, C. -W. Liu, and S. -S. Tsay, “Neural-network-based fuzzy model and its application to transient stability prediction in power systems,” IEEE Trans. Syst., Man, Cybern., vol. 29, no. 1, pp. 149-157, 1999.
[62] B.Tian, M. A. Shaikh, M. R. Azimi-Sadjadi, T. H. V. Haar, and D. L. Reinka, “A study of cloud classification with neural networks using spectral and textural features” IEEE Trans. on Neural Networks, vol.10, no. 1, pp. 138-150, January 1999.
[63] S. J. Verzi, G. L. Heileman, M. Georgiopoulos, and M. J. Healy, “Boosted ARTMAP,” IEEE Int. Joint Conf. on Neural Networks Proce.s, IEEE World Congress on Computational Intelligence, vol. 1, pp. 396-401, New York, USA, 1998.
[64] R. M. Welch, K. S. Kuo, S. K. Sengupta, and D. W. Chen, “Cloud field classification based upon high spatial resoulation textural feature (I): gray-level cooccurence matrix approach,” J. Geophys. Res., vol. 93, pp. 12663-12681, Oct. 1988.
[65] L. Zadeh, “Fuzzy sets,” Inform. Contr., vol. 8, pp. 338-353, 1965. |