參考文獻 |
[1] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–162, 1954.
[2] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” arXiv preprint arXiv:1310.4546, 2013.
[3] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1532–1543.
[4] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy, and N. A. Smith, “Retrofitting word vectors to semantic lexicons,” in Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2015, pp. 1606–1615.
[5] I. Vulić and N. Mrkšić, “Specialising word vectors for lexical entailment,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2018, pp. 1134–1145.
[6] M. Alsuhaibani, D. Bollegala, T. Maehara, and K.-i. Kawarabayashi, “Jointly learning word embeddings using a corpus and a knowledge base,” PloS one, vol. 13, no. 3, e0193094, 2018.
[7] K. A. Nguyen, M. Köper, S. S. i. Walde, and N. T. Vu, “Hierarchical embeddings for hypernymy detection and directionality,” arXiv preprint arXiv:1707.07273, 2017.
[8] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical representations,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 6341–6350.
[9] M. Alsuhaibani, T. Maehara, and D. Bollegala, “Joint learning of hierarchical word embeddings from a corpus and a taxonomy,” in Automated Knowledge Base Construction (AKBC), 2018.
[10] V. Shwartz, Y. Goldberg, and I. Dagan, “Improving hypernymy detection with an integrated path-based and distributional method,” in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2016, pp. 2389–2398.
[11] C. Wang and X. He, “BiRRE: Learning bidirectional residual relation embeddings for supervised hypernymy detection,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online: Association for Computational Linguistics, Jul. 2020, pp. 3630–3640. doi: 10.18653/v1/2020.aclmain.334. [Online]. Available: https://www.aclweb.org/anthology/2020.aclmain.334.
[12] C. Sun, L. Huang, and X. Qiu, “Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 380–385. doi: 10.18653/v1/N19 1035. [Online]. Available: https://www.aclweb.org/anthology/N19-1035.
[13] S. Yu, J. Su, and D. Luo, “Improving bert-based text classification with auxiliary sentence and domain knowledge,” IEEE Access, vol. 7, pp. 176 600–176 612, 2019. doi: 10.1109/ACCESS.2019.2953990.
[14] K. A. Nguyen, S. Schulte im Walde, and N. T. Vu, “Integrating distributional lexical contrast into word embeddings for antonym-synonym distinction,” in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume2: Short Papers), Berlin, Germany: Association for Computational Linguistics, Aug. 2016, pp. 454–459. doi: 10 . 18653 / v1 / P16 - 2074. [Online]. Available: https ://aclanthology.org/P16-2074.
[15] S. Roller and K. Erk, “Relations such as hypernymy: Identifying and exploiting hearst patterns in distributional vectors for lexical entailment,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas: Association for Computational Linguistics, Nov. 2016, pp. 2163–
2172. doi: 10.18653/v1/D16-1234. [Online]. Available: https://www.aclweb.org/anthology/D16-1234.
[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.
[17] D. Bollegala, M. Alsuhaibani, T. Maehara, and K.-i. Kawarabayashi, “Joint word representation learning using a corpus and a semantic lexicon,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 2016.
[18] G. Glavaš and S. P. Ponzetto, “Dual tensor model for detecting asymmetric lexicosemantic relations,” in Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, 2017, pp. 1757–1767.
[19] C. Fellbaum, “Wordnet,” in Theory and applications of ontology: computer applications, Springer, 2010, pp. 231–243.
[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
[21] I. Vulić, D. Gerz, D. Kiela, F. Hill, and A. Korhonen, “Hyperlex: A large-scale evaluation of graded lexical entailment,” Computational Linguistics, vol. 43, no. 4, pp. 781–835, 2017.
[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
[23] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Dbpedia: A nucleus for a web of open data,” in The Semantic Web, K. Aberer, K.-S. Choi,
N. Noy, D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika, D. Maynard, R.Mizoguchi, G. Schreiber, and P. Cudré-Mauroux, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 722–735, isbn: 978-3-540-76298-0.
[24] D. Vrandečić, “Wikidata: A new platform for collaborative data collection,” in Proceedings of the 21st International Conference on World Wide Web, ser. WWW ’12 Companion, Lyon, France: Association for Computing Machinery, 2012, pp. 1063–1064, isbn: 9781450312301. doi: 10.1145/2187980.2188242. [Online]. Available: https://doi.org/10.1145/2187980.2188242.
[25] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A core of semantic knowledge,” in Proceedings of the 16th international conference on World Wide Web, 2007, pp. 697–706.
[26] L. KOTLERMAN, I. DAGAN, I. SZPEKTOR, and M. ZHITOMIRSKY-GEFFET, “Directional distributional similarity for lexical inference,” Natural Language Engineering, vol. 16, no. 4, pp. 359–389, 2010.
[27] M. Baroni and A. Lenci, “How we blessed distributional semantic evaluation,” in Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, 2011, pp. 1–10.
[28] M. Baroni, R. Bernardi, N.-Q. Do, and C.-c. Shan, “Entailment above the word level in distributional semantics,” in Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, 2012, pp. 23–32.
[29] O. Levy, I. Dagan, and J. Goldberger, “Focused entailment graphs for open ie propositions,” in Proceedings of the Eighteenth Conference on Computational Natural Language Learning, 2014, pp. 87–97.
[30] M. Zhitomirsky-Geffet and I. Dagan, “Bootstrapping distributional feature vector quality,” Computational linguistics, vol. 35, no. 3, pp. 435–461, 2009.
[31] A. Lenci and G. Benotto, “Identifying hypernyms in distributional semantic spaces,” in * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), 2012, pp. 75–79.
[32] D. Kiela, L. Rimell, I. Vulic, and S. Clark, “Exploiting image generality for lexical entailment detection,” in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (ACL 2015), ACL; East Stroudsburg, PA, 2015, pp. 119–124.
[33] S. Roller, D. Kiela, and M. Nickel, “Hearst patterns revisited: Automatic hypernym detection from large text corpora,” in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Melbourne, Australia: Association for Computational Linguistics, Jul. 2018, pp. 358– 363. doi: 10.18653/v1/P18-2057. [Online]. Available: https://www.aclweb.org/anthology/P182057.
[34] M. Le, S. Roller, L. Papaxanthos, D. Kiela, and M. Nickel, “Inferring concept hierarchies from text corpora via hyperbolic embeddings,” in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy: Association for Computational Linguistics, Jul. 2019, pp. 3231–3241. doi: 10.18653/v1/P19-1313. [Online]. Available: https://www.aclweb.org/anthology/P19-1313.
[35] I. Vulić, D. Gerz, D. Kiela, F. Hill, and A. Korhonen, “HyperLex: A large-scale evaluation of graded lexical entailment,” Computational Linguistics, vol. 43, no. 4,pp. 781–835, Dec. 2017. doi: 10.1162/COLI_a_00301. [Online]. Available: https://www.aclweb.org/anthology/J17-4004. |