博碩士論文 108225025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:147 、訪客IP:18.222.35.77
姓名 許嘉雯(Chia-Wen Hsu)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 混合藥物之模型輔助早期臨床試驗設計
(Model-assistant early phase clinical trial designs for combined drugs)
相關論文
★ 藥物最低有效劑量之無母數鑑別★ 根據貝氏檢定建構的第一期臨床試驗設計
★ 第一期臨床試驗之貝氏調適設計★ 強餘震之即時貝氏預測
★ 鑑別最佳添加藥物劑量的兩階段早期臨床試驗設計★ 臺灣地區地下水品質之統計研究
★ 右設限存活資料之下每日可服劑量之研究★ 集集餘震之統計研究
★ 多群資料下最低有效劑量之聯合鑑別★ 最大餘震規模之統計分析
★ 最大餘震發生時間之統計分析★ 地震預測之統計分析
★ 加權Kaplan-Meier統計量之推廣★ 鑑別藥物最低有效劑量之檢定
★ 餘震序列RJ模型之貝氏分析★ 藥物最低有效劑量之穩健鑑別
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文針對癌症治療研發合併使用兩種藥物的複合藥設計早期臨床試驗,目的是找尋複合藥的最佳生物劑量組合,讓服用該劑量組合的病患發生劑量限制毒性的機率低於設定的目標毒性機率,且有最大機率出現藥效反應。本文提出兩種早期臨床試驗設計,第一種為兩階段設計,其中第一階段根據二元毒性反應資料初尋可接受毒性的劑量組合,然後利用二元藥效反應資料,在可接受毒性的劑量組合中,初尋有效的劑量組合即為可行的劑量組合;第二階段則分別使用調適性或平衡設計隨機配置世代病人服用持續修正的可行劑量組合。當受試者達到預定的人數時,則中止試驗,估計最佳生物劑量組合。第二種是單劑量組合漸增設計,同時根據二元毒性及藥效反應尋找可行的劑量組合,然後調適性的分配世代病人服用該劑量組合。本文進一步討論試驗中若有毒性晚發與藥效延遲的情形,如何在有效縮短試驗時間之下,修正試驗的設計。因為本文建立的調適性試驗設計無需使用特定的劑量組合與毒性或藥效關係的模式,僅務實地假設複合藥毒性會隨劑量組合提升而增強,藥效會隨劑量組合提升而增強或是在高劑量組合後維持不變,故上述的兩階段設計或單劑量組合漸增設計為模型輔助設計。本文最後在各種不同的毒性機率與藥效機率的組合情境下進行模擬研究,結果顯示兩階段設計能適當的控管試驗時間,單劑量組合漸增設計耗時良久,但是在正確估計最佳生物劑量組合與病人配置方面表現較佳。因此本文建議在單劑量組合漸增設計之前加入啟動階段,且在最大受試人數不變下,增加每一世代病人數以降低世代試驗次數。修正的單劑量組合漸增設計將能合理的管控試驗時間且維持鑑別最佳生物劑量組合的效率。
摘要(英) This thesis considers early clinical trial designs for cancer treatment by using the combined drugs as a combination of two drugs. Therefore, the purpose of early clinical trial designs is to find the optimal dose combination (ODC) so that the combined drugs preserve the maximum efficacy, while maintaining allowable probability of dose-limiting toxicity (DLT). Two different early phase clinical trial designs are considered for combined drugs. The first one is a two-stage design, where, in the first stage, dose combinations with admissible toxicity are initially estimated and then an initial estimate of dose combinations with feasible efficacy is obtained, and, in the second stage, cohorts of patients are randomly assigned adaptively or in balance to the selected ones from the continuously reassessed feasible dose combinations. When patients reaches the maximum number, the trial is stopped and the ODC is estimated. The other one is a single dose-combination ascending design that adaptively assigns feasible dose combinations to the next cohort of patients where the feasible ones are reevaluated based on the available binary data of toxicity and efficacy, simultaneously. The proposed trial designs are further modified for the situation with late-onset toxicity or delayed efficacy. The proposed two adaptive trial designs are, in fact, the model-assistant ones since both do not rely on any specific model for describing the relationship between the dose combination and toxicity or efficacy, but only employ a priori knowledge that the toxicity increases with dose combinations, and the efficacy increases and then remains the same at some high dose combinations. Finally, a simulation study is conducted to investigate the performances of the proposed designs under a variety of scenarios of toxicity and efficacy probabilities. The results show that the two-stage design well controls the trial time, while the time consuming single dose-combination ascending design performs better in correct ODC selection and patient assignment. However, after adding a start-up phase and increasing cohort size, hence, reducing number of cohorts under the same total number of patients, the modified single dose-combination ascending design would have a reasonable control of trial time and remain the efficiency on the ODC identification.
關鍵字(中) ★ 複合藥
★ 最佳生物劑量組合
★ 早期臨床試驗設計
★ 貝氏方法
★ 毒性晚發
★ 藥效延遲
關鍵字(英) ★ Combined drugs
★ Optimal dose combination
★ Early clinical trial design
★ Bayesian method
★ Late-onset toxicity
★ Delayed response
論文目次 摘要 i
Abstract ii
目錄 iv
圖目次 vi
表目次 x
第一章 研究動機及目的 1
第二章 文獻回顧 6
2.1單一藥物臨床試驗設計 6
2.1.1 Keyboard設計 6
2.1.2 STEIN設計 8
2.2 Keyboard複合藥臨床試驗設計 13
2.3 毒性晚發與藥效延遲問題 15
第三章 複合藥臨床試驗設計 21
3.1 兩階段複合藥設計 22
3.2 單劑量組合漸增複合藥設計 24
第四章 模擬研究 27
4.1模擬研究設計 27
4.2模擬研究結果 30
第五章 結論與未來研究 34
參考文獻 36
附錄 38
參考文獻 Cheung, Y.K. & Chappell, R. (2000) Sequential designs for phase I clinical trials with late-onset toxicities. Biometrics; 56:1177-1182.
Dykstra, R.L. & Robertson, T. (1982) An algorithm for isotonic regression for two or more independent variables. The Annals of Statistics; 10:708-716.
Guo, W., Wang, S.J., Yang, S., Lynn, H. & Ji, Y. (2017) A Bayesian interval dose-finding design addressing Ockham’s razor: MTPI-2. Contemporary Clinical Trials; 58:23-33.
Huang, X., Biswas, S., Oki, Y., Issa, J.P., Berry, D.A. (2007) A parallel phase I/II clinical trial design for combination therapies. Biometrics; 63:429-436.
Ji, Y., Li, Y. & Bekele, N. (2007) Dose-finding in phase I clinical trials based on toxicity probability intervals. Clinical Trials; 4:235-244.
Ji, Y., Liu, P., Li, Y. & Bekele, N. (2010). A modified toxicity probability interval method for dose-finding trials. Clinical Trials; 7:653-663.
Liu, S. & Yuan, Y. (2015) Bayesian optimal interval designs for phase I clinical trials. Journal of the Royal Statistical Society: Series C Applied Statistics; 64:507-523.
Liu, S. & Johnson, V.E. (2016) A robust Bayesian dose-finding design for phase I/II clinical trials. Biostatistics; 17:249-263.
Lin, R. & Yin, G. (2017) STEIN: A simple toxicity and efficacy interval design for seamless phase I/II clinical trials. Statistics in medicine; 36:4106-4120.
Lin, R. & Yin, G. (2017) Bayesian optimal interval design for dose finding in drug-combination trials. Statistical methods in medical research; 26: 2155- 2167.
Lin, R., Yuan, Y. (2020) Time-to-event model-assisted designs for dose-finding trials with delayed toxicity. Biostatistics; 21: 807–824.
O′Quigley, J., Pepe, M. & Fisher, L. (1990) Continual Reassessment Method: A practical design for phase I clinical trials in cancer. Biometrics; 46:33-48.
Pan, H., Lin, R., Zhou, Y., Yuan, Y. (2020) Keyboard design for phase I drug-combination trials. Contemporary Clinical Trials; 92:105972.
Storer, B.E. (1989) Design and analysis of phase I clinical trials. Biometrics; 45:925-937.
Takeda, K., Morita, S., Taguri, M. (2020) TITE-BOIN-ET: time-to-event Bayesian optimal interval design to accelerate dose-finding based on both efficacy and toxicity outcomes. Pharmaceutical Statistics; 19:335–349.
Yan, F., Mandrekar, S.J. & Yuan, Y. (2017) Keyboard: A novel Bayesian toxicity probability interval design for phase I clinical trials. Clinical Cancer Research; 23:3994-4003.
陳啟郡, 「早期臨床試驗模式輔助之兩階段設計」,國立中央大學,碩士論文,民國109年。
指導教授 陳玉英(Yuh-Ing Chen) 審核日期 2021-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明