參考文獻 |
[1] 張孟筑(2017). 應用累積暴露模式至單調過程之加速衰變模型,國立中央大學統計研究所,碩士論文。
[2] Abramowitz, M. and Stegun, I. A. (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables, Washington, D. C.: US Government
Printing Office.
[3] Azzalini, A. (2005). The skew-normal distribution and related multivariate families, Scandinavian Journal of Statistics, 32, 159–188.
[4] Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution, Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 61, 579–602.
[5] Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution, Biometrika, 83, 715–726.
[6] Chhikara, R. S., Folks, J. L. (1989). The inverse Gaussian distribution: Theory, methodology, and applications, New York: Marcel Dekker.
[7] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society:
Series B (Methodological), 39, 1–22.
[8] Di Nardo, E., Nobile, A. G., Pirozzi, E. and Ricciardi, L. M. (2001). A computational approach to first-passage-time problems for Gauss–Markov processes,
Advances in Applied Probability, 33, 453–482.
[9] Geller, M. and Ng, E. W. (1969). A table of integrals of the exponential integral, Journal of Research of the National Bureau of Standards, 71, 1–20.
[10] Gradshteyn, I. S. and Ryzhik, I. M. (2007). Table of integrals, series, and products, San Diego: Elsevier.
[11] Hamada, M. S., Wilson, A. G., Reese, C. S. and Martz, H. F. (2008). Bayesian reliability, New York: Springer-Verlag.
[12] Henze, N. (1986). A probabilistic representation of the skew-normal distribution Scandinavian Journal of Statistics, 13, 271–275.
[13] Liao, H. and Elsayed, E. A. (2006). Reliability inference for field conditions from accelerated degradation testing, Naval Research Logistics, 53, 576–587.
[14] Lin, T. I., Lee, J. C. and Hsieh, W. J. (2007). Robust mixture modeling using the skew t distribution, Statistics and Computing, 17, 81–92.
[15] Meeker, W. Q. and Escobar, L. A. (1998). Statistical methods for reliability data, New York: John Wiley & Sons.
[16] Meng, X. L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework, Biometrika, 80, 267–278.
[17] Nelson, W. (1980). Accelerated life testing-step-stress models and data analyses, IEEE Transactions on Reliability, 29, 103–108.
[18] Owen, D. B. (1956). Tables for computing bivariate normal probabilities, The Annals of Mathematical Statistics, 27, 1075–1090.
[19] Owen, D. B. (1980). A table of normal integrals, Communications in Statistics-Simulation and Computation, 9, 389–419.
[20] Peng, C. Y. (2015). Inverse Gaussian processes with random effects and explanatory variables for degradation data, Technometrics, 57, 100–111.
[21] Peng, C. Y. and Cheng, Y. S. (2016). Threshold degradation in R using iDEMO, Computational Network Analysis with R: Applications in Biology, Medicine and
Chemistry, Germany: John Wiley & Sons, 83–124.
[22] Peng, C. Y. and Cheng, Y. S. (2020). Student-t processes for degradation analysis, Technometrics, 62, 223–235.
[23] Peng, C. Y. and Tseng, S. T. (2009). Mis-specification analysis of linear degradation models, IEEE Transactions on Reliability, 58, 444–455.
[24] Peng, C. Y. and Tseng, S. T. (2013). Statistical lifetime inference with skew-Wiener linear degradation models, IEEE Transactions on Reliability, 62, 338–350.
[25] Pieruschka, E. (1961). Relation between lifetime distribution and the stress level causing the failures, Sunnyvale: Lockheed Missiles and Space.
[26] Singpurwalla, N. D. (1995). Survival in dynamic environments, Statistical Science, 10, 86–103.
[27] Wang, H. W. and Kang, R. (2020). Modeling of degradation data via Wiener stochastic process based on acceleration factor constant principle, Applied Mathematical Modelling, 84, 19–35.
[28] Wang, H. W. and Xi, W. J. (2016). Acceleration factor constant principle and the application under ADT, Quality and Reliability Engineering International, 32, 2591–2600.
[29] Whitmore, G. A. (1986). Normal-gamma mixtures of inverse Gaussian distributions, Scandinavian Journal of Statistics, 13, 211–220.
[30] Yang, G. (2007). Life cycle reliability engineering, New York: John Wiley & Sons. |