博碩士論文 104553011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:18.188.61.223
姓名 陳永祐(Yung-You Chen)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 近乎於量化參數最佳化應用於HEVC畫面內解碼之後處理機制
(Nearly QP-Optimized Post Processing for HEVC Intra Prediction)
相關論文
★ 10Gb/s MM XFP光收發模組設計與實現★ 資訊產品自動化測試之研究
★ 高電流密度鰭式氮化鎵高電子遷移率電晶體研究★ 電子郵件及壓縮檔案解碼之研究
★ 渦輪碼在光學記錄系統上之應用★ 離散餘弦轉換硬體架構之研究
★ 動態影像之錯誤隱藏研究★ 即時性無失真壓縮編碼之研究
★ 類神經網路在手寫數字辨識之研究★ 事後機率演算法則在資料儲存系統之研究
★ 紅外線傳輸協定及通道之研究★ 低密度同位元檢查碼在數位資料儲存系統之研究
★ 一種新型的JPEG2000竄改偵測與還原技術★ 即時性無失真壓縮之研究
★ 混合快速模式決策演算法之研究★ 光學記錄MEPR2通道系統之時序恢復探討與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-6以後開放)
摘要(中) 在影像品質不斷進步之下,人們對影像資料的需求量大幅增加。為了因應高解析度的影像,高效率視訊編碼(High Efficiency Video Coding,HEVC)能夠比上一代的視訊標準高出兩倍的壓縮率,這是因為高效率視訊編碼在影像壓縮技術中使用到編碼單元、預測單元、轉換單元以及量化等方式,而進行影像壓縮過程中,為了降低傳輸資訊,編碼使用到量化參數造成影像的失真。因此本論文解碼端使用卷積神經網路的架構進行反量化失真影像補償,而在此提出兩種卷積神經網路對於失真影像補償的主題,一個是CNN卷積神經網路對於各種影像品質優化的改善程度,另一個則是CNN卷積神經網路模型量化參數縮減。經過多次的實驗之後,在不影響原始影像的條件之下,解碼端透過CNN卷積神經網路模型只需要8個量化參數QP22,QP27,QP32,QP37,QP40,QP45,QP48,QP50取代原來QP31~QP51等31個量化參數且達到一樣的影像補償效果。
摘要(英) With the continuous improvement of image quality, people′s demand for image data has increased significantly. In order to handle high-resolution images, High Efficiency Video Coding (HEVC) can be twice as compressed as the previous generation of video standards. Because of HEVC uses coding units、prediction units、transfor units and quantization in image compression technologies. In order to reduce transmission information, encoding uses quantization parameters(QP) to cause image distortion. Therefore,decoding uses the convolutional neural network(CNN) architecture to perform inverse quantization of distortion image compensation in the end of this paper, and here are two topics of CNN compensation for distorted images, one is CNN for various image quality of the optimization, another is the reduction of the quantization parameters number of the CNN model. After many experiments, without affecting the original image, the decoder only needs 8 quantization parameters QP22, QP27, QP32, QP37, QP40, QP45, QP48, and QP50 to cover the original CNN model 31 quantization parameters such as QP31~QP51, and achieve the same image compensation effect.
Keywords: HEVC, Intra prediction, CNN, Compensate for the distorted image, Reduction the number of CNN Models
關鍵字(中) ★ 高效率視訊編碼
★ 畫面內預測
★ 失真影像補償
★ 卷積神經網路
★ 卷積神積網路模型數量縮減
關鍵字(英) ★ HEVC
★ Intra prediction
★ Compensate for the distorted image
★ Reduction the number of CNN Models
論文目次 論文摘要 VII
Abstract VIII
誌謝 IX
章節目錄 X
附圖索引 XIII
附表索引 XVI
第一章、緒論 1
1.1高效率視訊編碼 1
1.2 HEVC編碼架構介紹 2
1.2.1編碼單元(Coding Unit) 3
1.2.2預測單元(Prediction Unit) 4
1.2.3轉換單元(Transform Unit) 5
1.2.4碼率失真代價函數(RD Cost) 6
1.2.5畫面內編碼預測 7
1.2.6 量化(Quantization) 12
1.3支持向量機介紹 13
1.4深度學習介紹 17
1.4.1人工神經網路 18
1.4.2倒傳遞神經網路 19
1.4.3深度神經網路(Deep Neural Network) 21
1.4.4卷積神經網路(Convolutional Neural Networks,CNN) 22
1.5研究動機與目的 25
1.6論文架構 26
第二章、相關文獻回顧 27
2.1 超分辨率技術(Super-Resolution, SR) 27
2.2 SVM應用於HEVC編碼單元(CU)快速深度決策演算法 29
2.3 CNN應用於HEVC以增進影像品質相關文獻 43
2.3.1 Study of A Deep Learning Architecture For HEVC Decoder 43
2.3.2 An In-loop Filter Based on Low-Complexit CNN Using Residuals in Intra Video Coding 46
2.3.3 Enhancing Hevc Compressed Videos With A Partition-Masked Convolutional Neural Network 49
第三章、探討個別最佳化CNN模型用於HEVC解碼端之後處理架構 58
3.1 整體系統架構 58
3.2 卷積神經網路訓練與測試 60
3.2.1 環境配置 60
3.2.2 資料前處理 61
3.2.3 模型訓練 61
3.3 性能探討與分析 63
3.3.1 性能探討 64
3.3.2 編解碼時間分析 74
3.4 結論分析 77
第四章、CNN模型樣本數量縮減 79
4.1 性能探討與比較 79
4.1.1性能探討 80
4.2 結論分析 85
第五章、結論與未來展望 86
參考文獻 87
參考文獻 [1] “Coding of audio-visual objects - Part 2: Visual,” in ISO/IEC 14496-2
(MPEG-4 Visual Version 1), Apr. 1999.
[2] I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. Aberdeen, U.K.: John Wiley & Sons, 2003.
[3] JCT-VC, “High efficiency video coding (HEVC) test model 15(HM15) encoder description,” JCTVC-Q1002, JCT-VC Meeting, Valencia, ES, Apr. 2014.
[4] G.J. Sullivan, J.R. Ohm, W.J. Han, T. Wiegand, “ Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. CSVT, vol. 22, no. 12, Dec. 2012.
[5] C. Dong, C.C. Loy, K. He, X. Tang, “Learning a Deep Convolutional Network for Image Super-Resolution”, European Conference on Computer Vision (ECCV), ECCV 2014: Computer Vision – ECCV 2014 pp. 184-199
[6] C. Dong, C.C. Loy, X. Tang, “Accelerating the Super-Resolution Convolutional Neural Network”, European Conference on Computer Vision (ECCV), ECCV 2016: Computer Vision – ECCV 2016 pp 391-407
[7] W. Shi, J. Caballero, F. Huszár, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert, Z. Wang, “Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1874-1883
[8] J. Kim, J.K. Lee, K.M. Lee, “Accurate Image Super-Resolution Using Very Deep Convolutional Networks”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1646-1654
[9] J. Kim, J.K. Lee, K.M. Lee, “Deeply-Recursive Convolutional Network for Image Super-Resolution”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1637-1645
[10] X.J. Mao, C. Shen, Y. Yang, “Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections”, arXiv preprint arXiv:1606.08921, 2016
[11] Y. Tai, J. Yang, X. Liu, “Image Super-Resolution via Deep Recursive Residual Network”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3147-3155
[12] W.S. Lai, J.B. Huang, N. Ahuja, M.H. Yang, “Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 624-632
[13] T. Tong, G. Li, X. Liu, Q. Gao, “Image Super-Resolution Using Dense Skip Connections”, The IEEE International Conference on Computer Vision (ICCV), 2017, pp. 4799-4807
[14] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, W. Shi, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4681-4690
[15] K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778
[16] A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K. Andersson, M. Zhou, G.V. Auwera, “HEVC deblocking filter,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1746–1754, 2012.
[17] C.M. Fu, E. Alshina, A. Alshin, Y. Huang, C.Y. Chen, C.Y. Tsai, C.W. Hsu, S.M. Lei, J.H. Park,W.J. Han, “Sample adaptive offset in the HEVC standard,” IEEE Transactions on Circuits and Systems for Video technology, vol. 22, no. 12, pp. 1755–1764, 2012.
[18] W.S. Park, M. Kim, “CNN-based inloop filtering for coding efficiency improvement,” in Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), 2016 IEEE 12th. IEEE, 2016, pp. 1–5.
[19] S. Kuanar, C. Conly, K.R. Rao,“Deep learning based HEVC in-loop filtering for decoder quality enhancement”, 2018 Picture Coding Symposium (PCS)
[20] J. Kang, S. Kim, K.M. Lee,“Multi-modal/multi-scale convolutional neural network based in-loop filter design for next generation video codec”, 2017 IEEE International Conference on Image Processing (ICIP)
[21] H. Zhang, L. Song, Z. Luo, X. Yang, “Learning a Convolutional Neural Network for Fractional Interpolation in HEVC Inter Coding”, 2017 IEEE Visual Communications and Image Processing (VCIP)
[22] R. Yang, M. Xu, Z. Wang, “Decoder-side hevc quality enhancement with scalable convolutional neural network,” in Multimedia and Expo (ICME), 2017 IEEE International Conference on. IEEE, 2017, pp. 817–822.
[23] C.H. Yeh, Z.T. Zhang, M.J. Chen, C.Y. Lin, “HEVC Intra Frame Coding Based on Convolutional Neural Network”, IEEE Access p.p. 50087 – 50095
[24] F. Li, W. Tan, B. Yan,“Deep Residual Network for Enhancing Quality of the Decoded Intra Frames of Hevc”, 2018 25th IEEE International Conference on Image Processing (ICIP)
[25] J. Xu, L. Song, R. Xie,"Shot boundary detection using convolutional neural networks", Visual Communications and Image Processing (VCIP), 2016. IEEE, 2016, pp. 1–4.
[26] C. Li, L. Song, R. Xie, W. Zhang, "Cnn Based Post-Processing To Improve Hevc", International Conference on Image Processing(ICIP) 2017, pp.4577-4580
[27] S.J. Cai, “Reduction of computation complexity for HEVC intra prediction with support vector machine,” National Central University, Master Thesis, Jun 2017.
[28] Grand Challenge ICIP 2017, "Grand challenge on the use of image restoration for video coding efficiency improvement", Chttps://storage.googleapis.com/icip-2017/index.html.
[29] X. He, Q. Hu, X. Han, X. Zhang, C. Zhang, W. Lin, "Enhancing Hevc Compressed Videos With A Partition-Masked Convolutional Neural Network", International Conference on Image Processing(ICIP) 2018, pp.216-220
[30] Y.Dai, D. Liu, F.Wu, "A Convolutional Neural Network Approach for Post-Processing in HEVC Intra Coding", MultiMedia Modeling(MMM) 2017, pp.28-39
[31] R. Yang, M. Xu, Z. Wang, Z. Guan, "Enhancing quality for HEVC compressed videos", arXiv preprint arXiv:1709.06734, 2017.
[32] Daowen Li, Lu Yu, “An In-Loop Filter Based on Low-Complexity CNN using Residuals in Intra Video Coding”, 2019 IEEE International Symposium on Circuits and Systems (ISCAS)
[33] S.M. Fan, “Study of A Deep Learning Architecture For HEVC Decoder”, Department of Communication Engineering National Central University, Taiwan 32054, R.O.C., Jan 2020.
[34] Q.H. Chen, “CNN-Based Post-Processing for HEVC Intra Prediction”, Department of Communication Engineering National Central University, Taiwan 32054, R.O.C., July 2020.
[35] Y.C. Chang, “A Combined Support Vector Machine and Convolutional Neural Network Architecture for HEVC”, Department of Communication Engineering National Central University, Taiwan 32054, R.O.C., Jan 2020.
指導教授 林銀議(Yin-Yi Lin) 審核日期 2021-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明