博碩士論文 106553025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.216.251.37
姓名 林俊宏(Chun-Hung Lin)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 一個4x4磁場感應器陣列設計與實作
(Design and Implementation of a 4x4 Magnetic field Sensor Array)
相關論文
★ 掌紋紋理特徵擷取與身分識別★ 以優勢點樹鄰近搜尋方法設計4808個 中文常用字分類器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-10-1以後開放)
摘要(中) 磁場感測器最早運用於礦物儲量以及地質結構的探勘,隨著物聯網的發展,對感測精確度以及小型化需求越來越高。開發多個單點感測器所組成磁場感測器陣列藉此取得空間中磁場分布的磁場特徵圖像,是非破壞性檢測(NDT)的研究重點。本文主要研究改良以微控制器(MCU)作為磁場感測器陣列系統控制核心所造成的傳遞延遲性及不同步問題。藉由MIAT實驗室所提出系統設計方法論設計一磁場感測陣列平行控制器,運用FPGA平行處理特性同步接收磁場感測器陣列資料,解決感測器與微控制器之間傳輸延遲性及不同步情況下影響獲取磁場數據的精確度,同時解決應用在複雜磁場感測器陣列系統開發時,微控制器會遇到的硬體資源不足問題。功能驗證上實作磁場感測器與FPGA嵌入式平台硬體電路板設計,組成4x4磁場感測器陣列系統。並於此系統進行實驗。實驗結果證明,利用FPGA所設計之平行控制器做為磁場感測器陣列系統控制核心,傳輸速度上16顆感測器所組成磁場感測器陣列磁場分量數據約4ms能完成擷取,相較於微控制器架構傳輸速度能縮短10倍的時間,有效降低傳輸延遲性提高磁場數據的精確度,並基於此系統架構實現磁場感測器陣列動態磁成像系統實作。
摘要(英) Magnetic field sensors had first used in the exploration of mineral reserves and geological structures. With the development of the Internet of Things (IoT), the requirements for sensing accuracy and miniaturization are getting higher and higher. The magnetic sensor array for spatial magnetic field distribution image is an important research area for non-destructive testing (NDT). This article mainly studies and improves the transmission delay and asynchronous issues caused by the microcontroller (MCU) in the magnetic field sensor array system. According to the system design proposed by the Machine Intelligence and Automation Technology (MIAT), the parallel controller in the magnetic field sensor array with Field Programmable Gate Array (FPGA) is used to receive the data synchronously. This design also solved the problem of insufficient hardware resources. At the same time, we solve the issue of transmission delay between the sensor and the microcontroller with more accurate magnetic field data under asynchronous conditions. We designed a 4x4 magnetic field sensor array system with FPGA in a plastic circuit board (PCB). Based on the implementation of the FPGA system architecture, we achieve the data from 16 sensors can be received within 4 ms. Compared with the design of single-chip architecture, the transmission speed decreased by 10 times. We successfully improve the transmission delay and the accuracy of sensing data.
關鍵字(中) ★ 異向性磁阻
★ 感測器陣列
★ 磁場成像
關鍵字(英) ★ Anisotropic magnetoresistance (AMR)
★ sensor array
★ magnetic field imaging
論文目次 摘 要 I
ABSTRACT II
謝誌 II
目錄 IV
圖目錄 VII
表目錄 XII
第一章、緒論 1
1.1 研究背景 1
1.2 研究目標 2
1.3 論文架構 3
第二章、文獻回顧 4
2.1 磁場基本理論 4
2.1.1 磁場量測 5
2.1.2 磁場強度(Magnetic intensity) 6
2.1.3 磁傾角(Magnetic inclination) 7
2.1.4 磁偏角(Magnetic declination) 8
2.2 磁場感測器 9
2.2.1 霍爾效應感測器 10
2.2.2 異向性磁阻(AMR) 11
2.2.3 巨磁阻(GMR) 12
2.2.4 穿隧磁阻(TMR) 13
2.2.5 超導量子干涉元件(SQUID) 14
2.2.6 MMC5883MA磁場感測器 15
2.3 磁場感測器通訊協定 22
2.3.1 I²C通訊介面 23
2.3.2 SPI通訊介面 28
2.3.3 UART通訊介面 30
2.4 磁場感測器陣列 33
第三章、磁場感測陣列平行控制器設計 36
3.1 MIAT系統設計方法論 36
3.1.1 IDEF0 階層式模組化設計 37
3.1.2 GRAFCET離散事件建模 39
3.1.3 合成規則 41
3.2 系統需求及IDEF0模組架構設計 43
3.3 Grafcet離散事件建模設計 46
3.3.1 I²C Master Grafcet 47
3.3.2 Magnetism Sensor control Grafcet 51
3.3.3 SPI Slave Grafcet 52
3.4 硬體電路合成 53
第四章、磁場感測器陣列系統設計 59
4.1 FPGA驗證平台 59
4.1.1 Intel Cyclone 10 LP FPGA 60
4.2 FPGA嵌入式平台硬體電路設計 65
4.2.1 電源供電系統 65
4.2.2 有源晶體振盪器 68
4.2.3 帶手動電源啟動復位電路 69
4.2.4 串列配置記憶體 70
4.2.5 JTAG介面電路 71
4.2.6 配置模式電路 72
4.2.7 IO介面電路 73
4.2.8 MMC5883MA磁場感測器硬體電路設計 77
4.3 磁場感測器陣列系統印刷電路板佈局與整合 78
4.3.1 FPGA嵌入式平台印刷電路板佈局設計 79
4.3.2 MMC5883MA磁場感測器印刷電路板佈局設計 82
4.3.3 磁場感測器陣列系統整合 83
第五章、系統整合驗證與實驗結果 85
5.1 實驗開發環境 85
5.1.1 STM32F7微控制器平台 85
5.1.2 磁場感測器陣列系統介紹 87
5.1.3 軟體開發驗證工具 87
5.2 磁場感測器陣列系統整合驗證 88
5.3 磁場感測器穩定性驗證 89
5.3.1 磁場感測器訊號處理 89
5.4 磁場感測器陣列軟體作業流程 91
5.5 單顆磁場感測器實驗 92
5.6 磁場感測器陣列磁成像實驗 93
5.7 與相關研究比較 95
5.8 研究預期之貢獻 95
第六章、結論與未來研究方向 96
6.1 結論 96
6.2 未來研究方向 96
參考文獻 97
參考文獻 [1] B. Zhang, Z. Guo, and Y. Qiao, "A simplified aeromagnetic compensation model for low
magnetism UAV platform," IEEE International Geoscience and Remote Sensing Symposium,
vol. 24, no. 8, pp. 3401-3404, 2011.
[2] X. Zhou, "Vehicle location estimation based on a magnetic sensor array," IEEE Sensors Applications Symposium Proceedings, pp. 80-83, 2013.
[3] D. Benitez, S. Quek, P. Gaydecki, and V. Torres, "A 1-D Solid-State-Sensor-Based Array System for Magnetic Field Imaging of Steel Reinforcing Bars Embedded Within Reinforced Concrete," IEEE Transactions on Instrumentation and Measurement, pp. 3335-3340, 2009.
[4] B. Li, T. Gallagher, A. G Dempster, and C. Rizos, "How feasible is the use of magnetic field alone for indoor positioning?," IEEE International Conference on Indoor Positioning and Indoor Navigation, pp. 1-9, 2012.
[5] N. S. Kathir, G. Srinath, T. R. Kumar and M. Prabhakaran, "Image Based Defect Analysis Using NDT," 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 528-531, 2018.
[6] 董倫道、林蔚、李柏村、張碩芳、李錦發,台灣北部火成岩體及地質構造空中地球物理探測,14頁,台團法人工業技術研究院、經濟部中央地質調查所,2014年。
[7] X. Hu and W. Yang, "An imaging system with planar PCB-coil sensor array," IEEE International Workshop on Imaging Systems and Techniques, pp. 26-31, 2009.
[8] Deepa and A. Singh, "Review of brain tumor detection from MRI images," 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 3997-4000, 2016.
[9] 范仁志,TDK磁感測器創造心臟檢查新應用,[Online]Available: https://www.digitimes.com.tw (July. 13, 2018).
[10] K. Tsukada, T. Kiwa, T. Kawata and Y. Ishihara, "Low-Frequency Eddy Current Imaging Using MR Sensor Detecting Tangential Magnetic Field Components for Nondestructive Evaluation," IEEE Transactions on Magnetics, vol. 42, no. 10, pp. 3315-3317, Oct. 2006.
[11] D. Benitez, S. Quek, P. Gaydecki and V. Torres, "A Preliminary Magnetoinductive Sensor System for Real-Time Imaging of Steel Reinforcing Bars Embedded Within Concrete," IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 11, pp. 2437-2442, 2008.
[12] A.B. Suksmono, D. Danudirdjo, A.D. Setiawan and D. Rahmawati, "Magnetic imaging system in smartphones based on built-in magnetometer," IEEE International Magnetics Conference, pp. 1-1, 2017.
[13] D. Rahmawati, D. Danudirdjo and A. B. Suksmono, "Magnetic Imaging System Based on HMC5883L Sensor Array," IEEE International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering, pp. 1-5, 2017.
[14] Guan-Wei Huang, Jen-Tzong Jeng, "Implementation of 16-Channel AMR Sensor Array for Quantitative Mapping of Two-Dimension Current Distribution," IEEE Transactions on Magnetics, pp. 1-5, 2018.
[15] J. Lenz and S. Edelstein, "Magnetic sensors and their applications," IEEE Sensors Journal, vol. 6, no. 3, pp. 631-649, 2006.
[16] P. Ripka and M. Janosek, "Advances in Magnetic Field Sensors," IEEE Sensors Journal, vol. 10, no. 6, pp. 1108-1116, 2010.
[17] E.H. Hall, "On a new action of the magnet on electric currents, " American Joirnal of Mathematics, 1879.
[18] R.S. Popovic, J.A. Flanagan, P.A. Besse, "The future of magnetic sensors, " Sensors and Actuators, 1996.
[19] Thomson, W.: Proc. R. Soc. London A 8 (1857), 546-550.
[20] Baibich, Mario Norberto, et al. "Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, "Physical review letters 61.21 (1988): 2472
[21] M. Julliere, "Tunneling between ferromagnetic films, " Phys. Lett. A, vol. 54, no. 3, pp. 225–226, 1975.
[22] S. Mitani, K. Tsukamoto, T. Seki, T. Shima, and K. Takanashi, IEEE Trans. Magn. 41, 2606-2608, 2005.
[23] B.D. Josephson, "Possible new Effects in Superconductive Tunnelling," Phys. Lett., vol. 1, no. 7, pp. 251-253, 1962.
[24] Memsic Inc., "±8Gauss, High Performance, Low Cost 3-axis Magnetic Sensor Datasheet.".
[25] Microchip Technology Inc., "The I2C Bus Specification Version 2.1" , Philips Semiconductors, 2000
[26] REN Yu-fei,ZHANG Xiang,CHENG Nai-ping, "Design and Realization of Two-way Transmission SPI Interface; Telecommunication Engineering ", 2009
[27] Universal Asynchronous Receiver/Transmitter-成大資工Wiki,2012[Online]. Available: http://wiki.csie.ncku.edu.tw/embedded/USART
[28] C. Hu, M. Li, S. Song, W. Yang, R. Zhang and M. Q. -. Meng, "A Cubic 3-Axis Magnetic Sensor Array for Wirelessly Tracking Magnet Position and Orientation," in IEEE Sensors Journal, vol. 10, no. 5, pp. 903-913, May 2010
[29] J. Gao, J. Wang, L. Zhang, Q. Yu, Y. Huang and Y. Shen, "Magnetic Signature Analysis for Smart Security System Based on TMR Magnetic Sensor Array," in IEEE Sensors Journal, vol. 19, no. 8, pp. 3149-3155, 15 April15, 2019
[30] C.-H. Chen, M.-Y. Lin, and X.-C. Guo, "High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things," Computers & Electrical Engineering, vol. 61, no. Supplement C, pp. 48-66, Jul. 2017.
[31] Intel Inc., "Intel Cyclone 10 LP Device Overview.".
[32] Intel Inc., "Cyclone 10LP Design Guidelines.".
[33] Intel Inc., "Cyclone 10LP Pin Connection Guideline.".
[34] Texas Instruments Inc., " High Efficiency Synchronous Buck Converter.".
[35] iDESYN Inc., " Dual High-Efficiency PWM Step-Down DC-DC Converter.".
指導教授 林銀議 陳慶瀚(Yin-Yi Lin Ching-Han Chen) 審核日期 2021-10-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明