參考文獻 |
[1] S. Chen, Y. Liu, X. Gao, and Z. Han, “MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices,” arXiv: 1804.07573, 2018.
[2] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, “ECA-Net: efficient channel attention for deep convolutional neural networks,” arXiv: 1910.03151v4, 2019.
[3] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for few-shot learning,” arXiv: 1502.01852, 2015.
[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ”ImageNet classification with deep convolutional neural networks,“ in Proc. Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada, Dec.3-8, 2012, pp.1097-1105.
[5] F. N. Iandola, S. Han, W. Moskewicz, K. Ashraf, W. Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 1mb model size,” arXiv: 1602.07360, 2016.
[6] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, Al. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” arXiv: 1409.0575v2, 2014.
[7] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: efficient convolutional neural networks for mobile vision applications,” arXiv: 1704.04861, 2017.
[8] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: an extremely efficient convolutional neural network for mobile devices,” arXiv: 1707.01083, 2017.
[9] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation networks,” arXiv: 1709.01507v4, 2017.
[10] S. Woo, J. Park, J. Lee, and I.S. Kweon, “CBAM: convolutional block attention module,” arXiv: 1807.06521v2, 2018.
[11] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-learning,” Artificial Intelligence Review, vol.18, pp.77-95, 2002.
[12] J. Vanschoren, “Meta-learning: a survey,” arXiv: 1810.03548v1, 2018.
[13] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning in neural networks: a survey,” arXiv: 2004.05439v 2, 2020.
[14] M. Huisman, J. N. van Rijn, and A. Plaat, “A survey of deep meta-learning,” arXiv: 2010.03522v2, 2020.
[15] S. Hochreiter, A. S. Younger, and P. R. Conwell, “Learning to learn using gradient descent,” in Proc. Int. Conf. on Artificial Neural Networks, Vienna, Austria, Aug.21-25, 2001, pp.87-94.
[16] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.C. Chen, “MobileNetV2: inverted residuals and linear bottlenecks,” arXiv: 1801.04381, 2018.
[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv: 1512.03385, 2015.
[18] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv: 1312.4400, 2013.
[19] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: surpassing human-level performance on ImageNet classification,” arXiv: 1502.01852, 2015.
[20] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in Proc. Int. Conf. on Machine Learning (ICML), Haifa, Israel, June 21-24, 2010, pp.807-814.
[21] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: additive angular margin loss for deep face recognition,” arXiv: 1801.07698, 2018.
[22] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, “CosFace: Large margin cosine loss for deep face recognition,” arXiv: 1801.09414v2, 2018.
[23] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax loss for convolutional neural networks,” arXiv: 1612.02295v4, 2016.
[24] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: a unified embedding for face recognition and clustering,” arXiv: 1503.03832, 2015.
[25] F. Wang, W. Liu, H. Liu, and J. Cheng, “Additive margin softmax for face verification,” arXiv: 1801.05599v4, 2018.
[26] G. Koch, R. Zemel, and R. Salakhutdinov, Siamese neural networks for one-shot image recognition, Master thesis, Sci. Graduate Dept. of Computer Science, Univ. of Toronto, Canada, 2015.
[27] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra, “Matching networks for one shot learning,” arXiv: 1606.04080v2, 2016.
[28] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M. Hospedales, “Learning to compare: relation network for few-shot learning,” arXiv: 1711.06025v2, 2017.
[29] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “MS-CELEB-1M: a dataset and benchmark for large-scale face recognition,” arXiv: 1607.08221, 2016.
[30] G. B. Huang., M. Ramesh, T. Berg, and E. Learned-Miller, Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments, Technical Report, Univ. of Massachusetts, Amherst, May, 2007. |