參考文獻 |
中文部份
林名彥 (2015) 「應用文字探勘技術於客訴資料之研究-以 台大 PPT 論壇為例」.
程致中 (2015) 「運用文字探勘技術探討旅館領域客戶評價之研究」
陳世榮 (2015). 「社會科學研究中的文字探勘應用: 以文意為基礎的文件分類及其問題. 人文及社會科學集刊, 27(4), 683-718. 」.
許中銓 (2015). 「以 文 字 探 勘 探 討 汽 車 美 容 業 消 費 者 網 路 評 價」.
莊正棟 (2016). 「文字探勘技術於電商網站 Facebook 粉絲專頁貼文成功關鍵之研究」.
英文部份
Amsury, F., Ruhyana, N., Saputra, I., & Sulistyowati, D. N. (2020). Classification Of Customer Complaints On INSTAGRAM Comments Using NAÏVE BAYES ALGORITHM WITH N-GRAM FEATURE EXTENSION. Jurnal Techno Nusa Mandiri, 17(2), 109-116
Arifianto, A., Suyanto, S., Sirwan, A., Desrul, D. R. K., Prakoso, I. D., Guntara, F. F., ... & Murti, R. S. (2020, August). Developing an LSTM-based Classification Model of IndiHome Customer Feedbacks. In 2020 International Conference on Data Science and Its Applications (ICoDSA) (pp. 1-5). IEEE.
Bayrak, A. T., Türker, B. B., Özbek, E. E., & Yıldız, E. SikayetIçeren Müsteri Yorumlarının Tespiti ve Sınıflandırılması Complaint Detection and Classification of Customer.
Cho, Y., Im, I., Hiltz, R., & Fjermestad, J. (2002, January). An analysis of online customer complaints: implications for web complaint management. In Proceedings of the 35th Annual Hawaii International Conference on System Sciences (pp. 2308-2317). IEEE.
Choe, P., Lehto, M. R., Shin, G. C., & Choi, K. Y. (2013). Semiautomated identification and classification of customer complaints. Human Factors and Ergonomics in Manufacturing & Service Industries, 23(2), 149-162.
Coussement, K., & Van den Poel, D. (2008). Improving customer complaint management by automatic email classification using linguistic style features as predictors. Decision Support Systems, 44(4), 870-882.
Gajbhiye, K., & Gupta, N. (2018, December).
Real Time Twitter Sentiment Analysis for Product Reviews Using Naive Bayes Classifier. In International conference on Computer Networks, Big data and IoT (pp. 342-350). Springer, Cham.
Galitsky, B. A., González, M. P., & Chesñevar, C. I. (2009). A novel approach for classifying customer complaints through graphs similarities in argumentative dialogues. Decision Support Systems, 46(3), 717-729.
Ghazzawi, A., & Alharbi, B. (2019). Analysis of customer complaints data using data mining techniques. Procedia Computer Science, 163, 62-69.
Gunawan, D., Siregar, R. P., Rahmat, R. F., & Amalia, A. (2018, March). Building automatic customer complaints filtering application based on Twitter in Bahasa Indonesia. In Journal of Physics: Conference Series (Vol. 978, No. 1, p. 012119). IOP Publishing.
Gupta, N., Gilbert, M., & Fabbrizio, G. D. (2013). Emotion detection in email customer care. Computational Intelligence, 29(3), 489-505.
HaCohen-Kerner, Y., Dilmon, R., Hone, M., & Ben-Basan, M. A. (2019). Automatic classification of complaint letters according to service provider categories. Information Processing & Management, 56(6), 102102.
Hu, N., Zhang, T., Gao, B., & Bose, I. (2019). What do hotel customers complain about? Text analysis using structural topic model. Tourism Management, 72, 417-426.
Joung, J., Jung, K., Ko, S., & Kim, K. (2018). Customer Complaints Analysis Using Text Mining and Outcome-Driven Innovation Method for Market-Oriented Product Development. Sustainability, 11(1), 1-14.
Kano, E., Fujita, Y., & Tsuda, K. (2019).
A Method of Extracting and Classifying Local Community Problems from Citizen-Report Data using Text Mining. Procedia Computer Science, 159, 1347-1356Khedkar, S. A., & Shinde, S. K. (2018, December). Customer review analytics for business intelligence. In 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (pp. 1-5). IEEE.
Khedkar, S., & Shinde, S. (2020). Deep learning-based approach to classify praises or complaints from customer reviews. In Proceeding of International Conference on Computational Science and Applications (pp. 391-402). Springer, Singapore.
Khedkar, S., & Shinde, S. (2020). Deep Learning and Ensemble Approach for Praise or Complaint Classification. Procedia Computer Science, 167, 449-458.
Kim, H., Lee, T., Ryu, S., & Kim, N. (2018).
A Study on Text Mining Methods to Analyze Civil Complaints: Structured Association Analysis. Journal of the Korea Industrial Information Systems Research, 23(3), 13-24.
Lee, C. C., & Hu, C. (2005). Analyzing Hotel customers′ E-complaints from an internet complaint forum. Journal of Travel & Tourism Marketing, 17(2-3), 167-181.
Li, J., Lowe, D., Wayment, L., & Huang, Q. (2020). Text mining datasets of β-hydroxybutyrate (BHB) supplement products’ consumer online reviews. Data in brief, 30, 105385.
Putong, M. W. (2020). Classification model of contact center customers emails using machine learning. Advances in Science, Technology and Engineering Systems, 5(1), 174-182.
Ribeiro, J., Duarte, J., Portela, F., & Santos, M. F. (2019).
Automatically detect diagnostic patterns based on clinical notes through Text Mining. Procedia Computer Science, 160, 684-689.
Wang, Z., & Zhong, Y. (2020).
What were residents’ petitions in Beijing-based on text mining. Journal of Urban Management, 9(2), 228-237.
Wu, D. (2017, December). A big data analytics framework for forecasting rare customer complaints: A use case of predicting MA members′ complaints to CMS. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 3965-3967). IEEE.
Yang, Y., Xu, D. L., Yang, J. B., & Chen, Y. W. (2018). An evidential reasoning-based decision support system for handling customer complaints in mobile telecommunications. Knowledge-Based Systems, 162, 202-210.
|