博碩士論文 108453024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:18.225.56.181
姓名 曾郁庭(Yu-Ting Tseng)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 政府巨量資料應用服務能力成熟度模式之研究
(The Establishment of Government-based Big-Data Capability Maturity Model Integration)
相關論文
★ 專案管理的溝通關鍵路徑探討─以某企業軟體專案為例★ 運用並探討會議流如何促進敏捷發展過程中團隊溝通與文件化:以T銀行系統開發為例
★ 專案化資訊服務中人力連續派遣決策模式之研究─以高鐵行控資訊設備維護為例★ 以組織正義觀點介入案件指派決策之研究
★ 應用協調理論建立系統軟體測試中問題改善之協作流程★ 應用案例式推理於問題管理系統之研究 -以筆記型電腦產品為例
★ 運用限制理論於多專案開發模式的人力資源配置之探討★ 應用會議流方法於軟體專案開發之個案研究:以翰昇科技公司為例
★ 多重專案、多期再規劃的軟體開發接案決策模式:以南亞科技資訊部門為例★ 會議導向敏捷軟體開發及系統設計:以大學畢業專題為例
★ 一種基於物件、屬性導向之變更影響分析方法於差異化產品設計★ 會議流方法對大學畢業專題的團隊合作品質影響之實驗研究
★ 實施敏捷式發展法於大學部畢業專題之 行動研究 – 以中央大學資管系為例★ 建立一個用來評核自然語言需求品質的線上資訊系統
★ 結合本體論與模糊分析網路程序法於軟體測試之風險與風險關聯辨識★ 在軟體反向工程中針對UML結構模型圖之線上品質評核系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 隨著資通訊科技(Information and Communication Technologies, ICTs)的蓬勃快速發 展,重新定義政府與公民或企業間的溝通與訊息交流方式,而資料量的快速增長,讓全 球政府掀起資料開放以及發展巨量資料應用服務之趨勢,期能從公眾資料洞察新觀點, 促進國家公共利益。我國政府也在相同的願景與期許下,發展巨量資料應用服務之國家 整體藍圖,積極將巨量資料分析技術與概念推動導入至各機關間,然而缺乏一個制度化 的執行流程參考指引。如果政府實作巨量資料應用服務可以從流程的角度進行改善,透 過流程面的實作要求以及達成程度的探討,將可讓政府在持續提升巨量資料應用服務上 有所依循。因此本研究嘗試運用在流程改善與優化的 CMMI 架構精神,設計政府巨量資 料應用服務能力成熟度模型(Government-based Big-Data Capability Maturity Model Integration,GBD-CMMI),提供政府一個導入巨量資料應用服務之參考指引與準則,讓 政府推動之巨量資料應用服務得以永續提供並持續優化,並藉由一個實際案例來說明 GBD-CMMI 的實務運用。
摘要(英) With the rapid advancement of Information and Communication Technologies (ICTs), the communication and transaction-related interactions between governments and citizens or enterprises have been redefined. Also, the rapidly increasing volumes of data has caused a growing global trend for governments to release data as ‘Open Data’ and work on establishing the ‘Big Data’, which is expected to drive insight to new perspectives from public data and to promote the national public interest. With the same vision and expectation, Taiwan government has developed an overall national blueprint for big data services, and actively promoted the techniques and concept of big data to all agencies, however, there is lack of the reference guide for the institutionalized implementation process which can be followed by the agencies. Governments will be able to increase the level of their big data service by focusing on the improvement of the processes. Thus, this study attempts to establish Government-based Big- Data Capability Maturity Model Integration (GBD-CMMI), based on the process-improved concept and the framework of CMMI (Capability Maturity Model Integration), and is expected to provide a reference guideline for government to implement big data services, so that the government can sustainably improve their big data service. Lastly, this study supplied illustrative example of GBD-CMMI through an actual case.
關鍵字(中) ★ 巨量資料
★ 能力成熟度模式(CMMI)
★ 流程專注
★ 政府
★ 制度化
關鍵字(英) ★ Big data
★ Capability Maturity Model Integration (CMMI)
★ Process-oriented
★ Government
★ Institutionalization
論文目次 摘要 i
Abstract ii
圖目錄 vi
表目錄 vi
一、緒論 1
1-1 研究背景1
1-2 研究動機與問題2
1-3 研究目的4
1-4 研究範圍與假設5
1-5 研究架構5
二、文獻探討 7
2-1 巨量資料應用服務7
2-1-1 巨量資料定義與目的7
2-1-2 巨量資料應用服務的價值鏈8
2-1-3 巨量資料挑戰8
2-2 政府與企業建置巨量資料應用服務之特性9
2-3 CMM/CMMI 概念與相關應用 10
2-3-1 CMM/CMMI 概念 10
2-3-2 CMM/CMMI 相關應用 13
三、研究方法 15
3-1 架構模式簡介 15
3-1-1 架構設計概念15
3-1-2 流程領域設計概念15
3-2 GBD-CMMI 層級介紹 17
3-2-1 能力度層級17
3-2-2 成熟度層級18
3-2-3 等價對應18
3-3 GBD-CMMI 之流程領域 19
3-3-1 流程領域分類19
3-3-2 流程領域介紹20
3-4 永續化設計30
四、案例展示 33
4-1 案例介紹33
4-2 實際案例及資料蒐集方法33
4-3 實施 GBD-CMMI 的分析 34
4-3-1 專案管理領域34
4-3-2 資料處理流程領域35
4-3-3 資料管理領域35
4-3-4 支援領域36
4-4 GBD-CMMI 能力度及成熟度評估 36
五、研究討論 39
5-1 模式驗證39
5-1-1 驗證方式說明39
5-1-2 驗證結果40
5-2 模式比較41
5-3 研究限制43
六、結論與未來展望 44
參考文獻 45
附錄 51
參考文獻 1. 行政院(2005),「政府資訊公開法」,取自:https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=I0020026(Retrieved on: 2021/05/25)
2. 余孝先、趙祖佑(2015),「巨量資料應用,打造資料驅動決策的智慧政府」,國土及公共治理季刊,3(4),27-37。
3. 吳統雄(1985),「態度與行為研究的信度與效度: 理論、應用、反省」,民意學術專刊,夏季號,29-53。
4. 高振源(2019),「近年我國政府大數據政策與經費執行之探討」,國會季刊,47(1),64-89。
5. 國家發展委員會(2018),「智慧政府規劃」,取自:https://www.ndc.gov.tw/Content_List.aspx?n=589F7971894A9B51(Retrieved on: 2021/05/25)
6. 國家發展委員會資訊管理處(2018),「荷蘭與新加坡的資料治理,帶給臺灣政府服務新思維」,政府機關資訊通報,352,25-27。
7. 陳仲儼、陳珮瑩、陳珮琪(2007),「應用 CMMI 於資訊系統品質改善流程制度化方法之研究-台塑養生文化村之資訊系統為例」,品質學報,14(3),267-283。
8. 陳敦源、蕭乃沂、廖洲棚(2015),「邁向循證政府決策的關鍵變革:公部門巨量資料分析的理論與實務」,國土及公共治理季刊,3(3),33-44。
9. 陳敦源、蕭乃沂、廖洲棚、陳恭、陳揚中、林威志、吳昱明、蔡宇祥(2016),「政府巨量資料分析與政策端應用效能提升之研析」,國家發展委員會委託研析報告NDC-104-035-003。
10. 經濟部(2020),「經濟部推動資料整合 四年有成」,取自:https://www.moea.gov.tw/Mns/populace/news/News.aspx?kind=1&menu_id=40&news_id=92602(Retrieved on: 2021/05/25)
11. 經濟部資訊中心(2021),「第五階段電子化政府計畫」,取自:https://www.moea.gov.tw/MNS/isc/content/Content.aspx?menu_id=21118(Retrieved on: 2021/05/25)
12. 數位時代(2014),「毛治國祭出科技三箭:開放資料、大數據、群眾外包」,取自:https://www.bnext.com.tw/article/34796/BN-ARTICLE-34796(Retrieved on: 2021/05/25)
13. Adrian, C., Abdullah, R., Atan, R., & Jusoh, Y. Y. (2016). Towards developing strategic assessment model for big data implementation: A systematic literature review. International Journal of Advances in Soft Computing and its Applications, 8(3), 173-192.
14. Al-Sai, Z. A., & Abdullah, R. (2019). A review on big data maturity models. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), 156-161.
15. Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A., & Buyya, R. (2015). Big Data computing and clouds: Trends and future directions. Journal of Parallel and Distributed Computing, 79, 3-15.
16. Baikloy, E., Praneetpolgrang, P., & Jirawichitchai, N. (2020). Development of cyber resilient capability maturity model for cloud computing services. TEM Journal, 9(3), 915-923.
17. Barclay, C. (2014, June). Sustainable security advantage in a changing environment: The Cybersecurity Capability Maturity Model (CM 2). 2014 ITU kaleidoscope academic conference: Living in a converged world-Impossible without standards? IEEE, 275-282.
18. Chen, C. P., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information sciences, 275, 314-347.
19. Chen, C. Y., & Kuo, C. Y. (2011). The design and development of teaching capability maturity model. Curriculum & Instruction Quarterly, 14(1), 141-174.
20. Chen, C. Y., & Yu, P. L. (2008). An e-business CMMI model with case studies in the cosmetic and drug industry. Journal of e-Business, 10(1), 139-172.
21. Chen, C. Y., Chen, C. S., & Wang, X. T. (2014). Cloud Service Capability Maturity Model (Cs-Cmm): A Preliminary Study on Its Conceptual Design. International Journal of Electronic Business Management, 12(3), 190-199.
22. Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile networks and applications, 19(2), 171-209.
23. Chen, Y. C., & Hsieh, T. C. (2014). Big data for digital government: Opportunities, challenges, and strategies. International journal of public administration in the digital age (IJPADA), 1(1), 1-14.
24. Chun, S., Shulman, S., Sandoval, R., & Hovy, E. (2010). Government 2.0: Making connections between citizens, data and government. Information Polity, 15(1, 2), 1-9.
25. CMMI Institute. (2019). Data management maturity model. 取自:https://cmmiinstitute.com/getattachment/cb35800b-720f-4afe-93bf-86ccefb1fb17/attachment.aspx(Retrieved on: 2021/05/25)
26. Curry, E., Ngonga, A., Domingue, J., Freitas, A., Strohbach, M., Becker, T. (2014). D2.2.2. Final version of the technical white paper. Public deliverable of the EU-Project BIG (318062; ICT-2011.4.4).
27. Curtis, B., Hefley, W. E., & Miller, S. A. (2009). People capability maturity model (P-CMM) version 2.0. Pittsburg, PA: Carnegie Mellon Software Engineering Process Management.
28. Dietrich, B. L., Plachy, E. C., & Norton, M. F. (2014). Analytics across the enterprise: How IBM realizes business value from big data and analytics. Financial Times Prentice Hall, IBM Press.
29. Dutta, D., & Bose, I. (2015). Managing a big data project: the case of ramco cements limited. International Journal of Production Economics, 165, 293-306.
30. Englbrecht, L., Meier, S., & Pernul, G. (2020). Towards a capability maturity model for digital forensic readiness. Wireless Networks, 26(7), 4895-4907.
31. Farah, B. (2017). A value based big data maturity model. Journal of Management Policy and Practice, 18(1), 11-18.
32. Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International journal of information management, 35(2), 137-144.
33. Gao, J., Koronios, A., & Selle, S. (2015). Towards a process view on critical success factors in big data analytics projects. Proceedings of the Twenty-First Americas Conference on Information Systems (AMCIS), Puerto Rico, 1-14.
34. Gartner Information Technology Gartner Glossary(2020).取自:https://www.gartner.com/en/information-technology/glossary/big-data (Retrieved on: 2021/05/25)
35. George, G., Osinga, E. C., Lavie, D., & Scott, B. A. (2016). Big data and data science methods for management research. Academy of Management Journal 2016, 59(5), 1493-1507.
36. Halper, F., & Krishnan, K. (2014). TDWI Big Data Maturity Model Guide. TDWI research, 1-16.
37. Hardy, K., & Maurushat, A. (2017). Opening up government data for Big Data analysis and public benefit. Computer law & security review, 33(1), 30-37.
38. Hu, H., Wen, Y., Chua, T. S., & Li, X. (2014). Toward scalable systems for big data analytics: A technology tutorial. IEEE access, 2, 652-687.
39. Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy Artificial Intelligence. Government Information Quarterly, 37(3), 101493.
40. Kallio, H., Pietilä, A. M., Johnson, M., & Kangasniemi, M. (2016). Systematic methodological review: developing a framework for a qualitative semi‐structured interview guide. Journal of advanced nursing, 72(12), 2954-2965.
41. Kerrigan, M. (2013). A capability maturity model for digital investigations. Digital Investigation, 10(1), 19-33.
42. Kim, G. H., Trimi, S., & Chung, J. H. (2014). Big-data applications in the government sector. Communications of the ACM, 57(3), 78-85.
43. Klievink, B., Romijn, B. J., Cunningham, S., & de Bruijn, H. (2017). Big data in the public sector: Uncertainties and readiness. Information systems frontiers, 19(2), 267-283.
44. Kourla, S. R., Putti, E., & Maleki, M. (2020). Importance of Process Mining for Big Data Requirements Engineering. International Journal of Computer Science & Information Technology (IJCSIT), 12(4), 1-12.
45. Labrinidis, A., & Jagadish, H. V. (2012). Challenges and opportunities with big data. Proceedings of the VLDB Endowment, 5(12), 2032-2033.
46. Le, N. T., & Hoang, D. B. (2017). Capability Maturity Model and Metrics Framework for Cyber Cloud Security. Scalable Computing: Practice and Experience, 18(4), 277-290.
47. Limpeeticharoenchot, S., Cooharojananone, N., Chanvanakul, T., Tuaycharoen, N., & Atchariyachanvanich, K. (2020). Innovative Mobile Application for Measuring Big Data Maturity: Case of SMEs in Thailand. International Journal of Interactive Mobile Technologies. 14(18), 87-106.
48. Maletic, J. I., & Marcus, A. (2000). Data Cleansing: Beyond Integrity Analysis. Proceedings of the conference on information quality, Citeseer, 200-209.
49. María Cavanillas, J., Curry, E., & Wahlster, W. (2016). New horizons for a data-driven economy: a roadmap for usage and exploitation of big data in Europe. Springer Nature.
50. Nunnally, J. C. (1978). An overview of psychological measurement. Clinical diagnosis of mental disorders, 97-146.
51. O ́Malley, Martin. (2014). Doing What Works: Governing in the Age of Big Data. Public Administration Review, 74(5), 555-556.
52. Okuyucu, A., & Yavuz, N. (2020). Big data maturity models for the public sector: a review of state and organizational level models. Transforming Government: People, Process and Policy, 14(4), 681-699.
53. Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber, C. V. (1993). Capability Maturity Model for Software, Version 1.1. Tech ReportCMUSEI-93TR-24, Software Engineering Institute.
54. Radcliffe, J. (2014). Leverage a big data maturity model to build your big data roadmap. Radcliffe Advisory Services Ltd, 1-6.
55. Saltz, J. S., & Shamshurin, I. (2016). Big data team process methodologies: A literature review and the identification of key factors for a project′s success. 2016 IEEE International Conference on Big Data (Big Data), 2872-2879
56. Schmarzo, B. (2013). Big Data: Understanding how data powers big business. John Wiley & Sons.
57. SEI (Software Engineering Institute). (2010). CMMI for Development, Version 1.3. Software Engineering Institute, Carnegie Mellon University.
58. SEI. (2011). Standard CMMI Appraisal Method for Process Improvement (SCAMPI) A, Version 1.3: Method Definition Document. Software Engineering Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-2011-HB-001.
59. Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263-286.
60. Vesset, D., & Xiong, S. (2015). IDC MaturityScape Benchmark: Big Data and Analytics in the United States. International Data Corporation (IDC).
61. Volk, M., Jamous, N., & Turowski, K. (2017). Ask the right questions: requirements engineering for the execution of big data projects. Proceedings of the Twenty-First Americas Conference on Information Systems (AMCIS), Boston, 1-10.
62. Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed, E., Anuar, N. B., & Vasilakos, A. V. (2016). Big data: From beginning to future. International Journal of Information Management, 36(6), 1231-1247.
63. Yeo, K. T., & Ren, Y. (2009). Risk management capability maturity model for complex product systems (CoPS) projects. Systems Engineering, 12(4), 275-294.
64. Yin, R. K. (2018). Case study research: Design and methods (6th ed.). Thousand Oaks, CA: Sage.
指導教授 陳仲儼 審核日期 2021-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明