博碩士論文 108423013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.118.151.211
姓名 呂雅琴(Ya-Chin Lu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 基於深度學習的協同過濾 推薦系統之改進
(An Improvement of Deep Learning Based Collaborative Filtering Recommendation System)
相關論文
★ 零售業商業智慧之探討★ 有線電話通話異常偵測系統之建置
★ 資料探勘技術運用於在學成績與學測成果分析 -以高職餐飲管理科為例★ 利用資料採礦技術提昇財富管理效益 -以個案銀行為主
★ 晶圓製造良率模式之評比與分析-以國內某DRAM廠為例★ 商業智慧分析運用於學生成績之研究
★ 運用資料探勘技術建構國小高年級學生學業成就之預測模式★ 應用資料探勘技術建立機車貸款風險評估模式之研究-以A公司為例
★ 績效指標評估研究應用於提升研發設計品質保證★ 基於文字履歷及人格特質應用機械學習改善錄用品質
★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題★ 關聯式資料庫之廣義知識探勘
★ 考量屬性值取得延遲的決策樹建構★ 從序列資料中找尋偏好圖的方法 - 應用於群體排名問題
★ 利用分割式分群演算法找共識群解群體決策問題★ 以新奇的方法有序共識群應用於群體決策問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 通常,基於深度學習的推薦系統有許多不同的混合推薦方法,這些方法結合了協同過濾和基於內容的過濾,而且它們大多使用內容特徵來獲取輸入資訊,例如使用者和項目資訊、評論文本、輔助訊息等,以提高推薦性能。
然而,在純協同過濾的情況下,我們沒有像混合式推薦系統那樣豐富的輸入資訊。儘管如此,我們相信從協同過濾中也可以獲得有用的輸入資訊。通過實現不同的協同過濾方法,可以從執行結果中提取類似於內容資訊的附加訊息作為輸入,來豐富推薦系統的輸入資訊。
因此,本文提出了一種同時結合基於模型和基於記憶的協同過濾的深度學習推薦系統,並從兩者的執行結果中提取有用的資訊作為輸入,將其應用到我們提出的模型中以增加輸入資訊。我們在兩個公開的 MovieLens 資料集上進行實驗,大量的實驗結果證明我們提出的模型比其他現有方法具有更好的性能。
摘要(英) Generally, recommendation systems based on deep learning have many different hybrid recommendation methods, which integrate collaborative filtering and content-based filtering. Most of them use content features to obtain input information, such as user and item information, review text, side information, etc., to improve recommendation performance. However, in the case of pure collaborative filtering, we do not have as rich input information as a hybrid-based recommendation system. Nevertheless, we believe that useful input information can also be obtained from collaborative filtering. By implementing different collaborative filtering methods, additional information similar to content information can be extracted from the execution results as input, enriching the input information of the recommendation system. Therefore, this paper proposes a deep learning recommendation system that combines model-based and memory-based collaborative filtering at the same time, and extracts useful information from the execution results of the two as input, and applies it to our proposed model to increase input information. We conducted experiments on two public MovieLens datasets, and a large number of experimental results prove that our proposed model has better performance than other existing methods.
關鍵字(中) ★ 推薦系統
★ 協同過濾
★ 深度學習
★ 基於模型的協同過濾
★ 基於記憶的協同過濾
關鍵字(英) ★ Recommender system
★ Collaborative filtering
★ Deep learning
★ Model-based collaborative filtering
★ Memory-based collaborative filtering
論文目次 摘要 i
ABSTRACT ii
List of Figures iv
List of Tables v
1. Introduction 1
2. Related work 7
2-1 Collaborative Filtering 7
2-1-1 Memory Based Collaborative Filtering 7
2-1-2 Model Based Collaborative Filtering 8
2-2 Content Based Filtering 9
2-3 Hybrid Recommendation 9
2-4 Deep learning based Hybrid Recommendation 11
2-5 Deep learning based Collaborative Filtering Recommendation 13
3. Proposed approach 15
3-1 Framework 15
3-2 Model based module 16
3-3 Memory based module 19
3-4 Model-Memory combined 21
4. Experiments and results 22
4-1 Datasets 22
4-2 Evaluation metric 22
4-3 Experimental setting 23
4-4 Experimental benchmark 24
4-5 Experimental platform 25
4-6 Experimental design 25
4-7 Results 26
4-7-1 Results of MovieLens 100k 27
4-7-2 Results of MovieLens 1M 34
4-7-3 Experiment summary 41
5. Conclusion and future work 42
5-1 Conclusion 42
5-2 Future work 42
Reference 44
參考文獻 [1] Herlocker, J.L., et al., Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 2004. 22(1): p. 5-53.
[2] Garcin, F., et al. Offline and online evaluation of news recommender systems at swissinfo. ch. in Proceedings of the 8th ACM Conference on Recommender systems. 2014.
[3] Sarwar, B., et al. Item-based collaborative filtering recommendation algorithms. in Proceedings of the 10th international conference on World Wide Web. 2001.
[4] Rendle, S., et al., BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.
[5] Herlocker, J.L., et al. An algorithmic framework for performing collaborative filtering. in Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. 1999.
[6] Koren, Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model. in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. 2008.
[7] Koren, Y., R. Bell, and C. Volinsky, Matrix factorization techniques for recommender systems. Computer, 2009. 42(8): p. 30-37.
[8] Schein, A.I., et al. Methods and metrics for cold-start recommendations. in Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval. 2002.
[9] Zheng, L., V. Noroozi, and P.S. Yu. Joint deep modeling of users and items using reviews for recommendation. in Proceedings of the tenth ACM international conference on web search and data mining. 2017.
[10] Kim, D., et al. Convolutional matrix factorization for document context-aware recommendation. in Proceedings of the 10th ACM conference on recommender systems. 2016.
[11] Safoury, L. and A. Salah, Exploiting user demographic attributes for solving cold-start problem in recommender system. Lecture Notes on Software Engineering, 2013. 1(3): p. 303-307.
[12] Krizhevsky, A., I. Sutskever, and G.E. Hinton, Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 2012. 25: p. 1097-1105.
[13] Collobert, R. and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. in Proceedings of the 25th international conference on Machine learning. 2008.
[14] Dahl, G.E., et al., Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Transactions on audio, speech, and language processing, 2011. 20(1): p. 30-42.
[15] Hinton, G., et al., Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine, 2012. 29(6): p. 82-97.
[16] Manotumruksa, J., C. Macdonald, and I. Ounis. Matrix factorisation with word embeddings for rating prediction on location-based social networks. in European Conference on Information Retrieval. 2017. Springer.
[17] Salakhutdinov, R., A. Mnih, and G. Hinton. Restricted Boltzmann machines for collaborative filtering. in Proceedings of the 24th international conference on Machine learning. 2007.
[18] Li, S., J. Kawale, and Y. Fu. Deep collaborative filtering via marginalized denoising auto-encoder. in Proceedings of the 24th ACM international on conference on information and knowledge management. 2015.
[19] Wu, Y., et al. Collaborative denoising auto-encoders for top-n recommender systems. in Proceedings of the ninth ACM international conference on web search and data mining. 2016.
[20] He, X., et al. Neural collaborative filtering. in Proceedings of the 26th international conference on world wide web. 2017.
[21] Seo, S., et al. Interpretable convolutional neural networks with dual local and global attention for review rating prediction. in Proceedings of the eleventh ACM conference on recommender systems. 2017.
[22] Zhang, Y., et al. Joint representation learning for top-n recommendation with heterogeneous information sources. in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017.
[23] Zhao, X., et al. Deep reinforcement learning for page-wise recommendations. in Proceedings of the 12th ACM Conference on Recommender Systems. 2018.
[24] Zhou, C., et al. Atrank: An attention-based user behavior modeling framework for recommendation. in Proceedings of the AAAI Conference on Artificial Intelligence. 2018.
[25] Sharma, R., D. Gopalani, and Y. Meena. Collaborative filtering-based recommender system: Approaches and research challenges. in 2017 3rd international conference on computational intelligence & communication technology (cict). 2017. IEEE.
[26] Afoudi, Y., M. Lazaar, and M. Al Achhab. Collaborative filtering recommender system. in International Conference on Advanced Intelligent Systems for Sustainable Development. 2018. Springer.
[27] Raghuwanshi, S.K. and R. Pateriya, Collaborative filtering techniques in recommendation systems, in Data, Engineering and Applications. 2019, Springer. p. 11-21.
[28] Kant, S. and T. Mahara, Merging user and item based collaborative filtering to alleviate data sparsity. International Journal of System Assurance Engineering and Management, 2018. 9(1): p. 173-179.
[29] Thakkar, P., et al., Combining user-based and item-based collaborative filtering using machine learning, in Information and Communication Technology for Intelligent Systems. 2019, Springer. p. 173-180.
[30] Aggarwal, C.C., Model-based collaborative filtering, in Recommender systems. 2016, Springer. p. 71-138.
[31] Xu, C., A novel recommendation method based on social network using matrix factorization technique. Information processing & management, 2018. 54(3): p. 463-474.
[32] Diop, M., et al., Binary Matrix Factorization applied to Netflix dataset analysis. IFAC-PapersOnLine, 2019. 52(24): p. 13-17.
[33] Pal, A., P. Parhi, and M. Aggarwal. An improved content based collaborative filtering algorithm for movie recommendations. in 2017 tenth international conference on contemporary computing (IC3). 2017. IEEE.
[34] Anand, P.B. and R. Nath, Content‐Based Recommender Systems. Recommender System with Machine Learning and Artificial Intelligence: Practical Tools and Applications in Medical, Agricultural and Other Industries, 2020: p. 165-195.
[35] Thorat, P.B., R. Goudar, and S. Barve, Survey on collaborative filtering, content-based filtering and hybrid recommendation system. International Journal of Computer Applications, 2015. 110(4): p. 31-36.
[36] Aslanian, E., M. Radmanesh, and M. Jalili, Hybrid recommender systems based on content feature relationship. IEEE Transactions on Industrial Informatics, 2016.
[37] Vasile, F., E. Smirnova, and A. Conneau. Meta-prod2vec: Product embeddings using side-information for recommendation. in Proceedings of the 10th ACM Conference on Recommender Systems. 2016.
[38] Wang, X., et al. Item silk road: Recommending items from information domains to social users. in Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. 2017.
[39] Gan, M., Y. Ma, and K. Xiao, CDMF: a deep learning model based on convolutional and dense-layer matrix factorization for context-aware recommendation. 2019.
[40] Han, J., et al., Adaptive deep modeling of users and items using side information for recommendation. IEEE transactions on neural networks and learning systems, 2019. 31(3): p. 737-748.
[41] Li, X., et al., Personalised reranking of paper recommendations using paper content and user behavior. ACM Transactions on Information Systems (TOIS), 2019. 37(3): p. 1-23.
[42] Yang, Z. and M. Zhang, TextOG: A Recommendation Model for Rating Prediction Based on Heterogeneous Fusion of Review Data. IEEE Access, 2020. 8: p. 159566-159573.
[43] Nassar, N., A. Jafar, and Y. Rahhal, A novel deep multi-criteria collaborative filtering model for recommendation system. Knowledge-Based Systems, 2020. 187: p. 104811.
[44] Xue, H.-J., et al. Deep Matrix Factorization Models for Recommender Systems. in IJCAI. 2017. Melbourne, Australia.
[45] Guan, X., C.-T. Li, and Y. Guan, Matrix factorization with rating completion: An enhanced SVD model for collaborative filtering recommender systems. IEEE access, 2017. 5: p. 27668-27678.
[46] Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
指導教授 陳彥良(Yen-Liang Chen) 審核日期 2021-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明