博碩士論文 108423050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.226.34.148
姓名 趙子昂(Tzu-Ang Chao)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 自助服務補救:探討電子商務網站補救措施、知覺公平與補救滿意度之關係
(The self-service recovery: Exploring the relationship among electronic commerce recovery initiatives, perceived justice, and recovery satisfaction)
相關論文
★ 影響消費者使用冷錢包簽帳卡之研究★ 從預期心理觀點探討線上群眾募資平台之衝動贊助意圖
★ 被忽略的沉默力量:探討瀏覽品質、沉浸體驗、潛水者公民行為之關係★ 當我們同在一起:從消費者—其他消費者互動觀點探究感染氣候與規範信念之影響
★ 對話式服務代理人:探索聊天機器人之服務品質與服務體驗★ 社群商務之快速信任與快速關係建立: 信號理論觀點
★ 由學習轉移理論探索消費者對線上至線下 商業模式之體驗轉移過程★ 運用資料探勘技術優化 次世代防火牆規則之研究
★ 以推敲可能性模式結合賦能理論探討公益性質群眾募資之贊助意圖:自我價值感與間接互惠的中介角色★ 組織數位學習準備度對學習者準備度之影響:資訊系統成功模式的觀點
★ 社會行動團體之社群媒體使用對志工保留之影響:社會資本的觀點★ 探討應用資料增強及改善類別不平衡問題 對不同股票圖形之影響-以台灣股市0050ETF為例
★ 以文字探勘技術分析標籤劫持—以twitter為例★ 探討個人賣家之社群商務能力養成:組織學習理論觀點
★ 您累了嗎?遠距辦公之工作—生活壓力對員工工作表現的影響:組織與個人層級應對策略的調節效果★ 探討顧客購買後之角色內到角色外行為: 社群商務顧客關係管理能力的調節效果
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-11以後開放)
摘要(中) 在疫情對全球經濟的衝擊之下,電子商務產業的表現反倒是創下一波高峰。隨著消費者逐漸導向網路購物的趨勢,線上服務失誤發生的情況也大幅度地增加。如何有效控管服務失誤與提供服務補救策略,是每個服務提供者皆需要面對的重要議題。回顧網路購物的相關文獻,大多著墨於服務提供者於補救過程中所扮演的角色,卻忽略探究由消費者自行完成服務補救的相關議題。因此,以公平理論與自助服務補救的觀點為基礎,本研究欲探究自助補救措施之易用性(即理解容易度和操作直覺性)與有用性(即補救資訊配適度和補救完整度),如何經由消費者知覺公平(即分配公平、程序公平、互動公平和資訊公平)影響其補救滿意度。
本論文針對曾經於電商網站發生服務失誤經驗的消費者進行便利性抽樣法,以線上問卷蒐集301筆有效樣本,並結構方程模型進行假說驗證。研究結果顯示自助補救措施的理解容易度、補救資訊配適度與補救完整度會正向影響消費者的知覺公平,進而產生補救滿意度。但操作直覺性卻對知覺公平沒有顯著之影響。研究結果期對服務失誤、服務補救與知覺公平相關文獻做出貢獻,並在實務上為電子商務網站管理者在補救措施的經營與制定策略上帶來參考依據。
摘要(英) While the COVID-19 pandemic has damaged the world economy, the electronic commerce industry has somehow achieved a record-breaking performance. With the fast-growing populations involved in online shopping, the occurrences of online service failures have increased significantly. Thus, it is greatly important for service providers to carefully manage service failures and provide recovery strategies. However, to the best of our knowledge, empirical studies have mostly focused on the role of service providers in the service recovery process. Few studies have examined the issues of customers’ self-service recovery in online service failure settings. Thus, based on the justice theory and a self-service recovery perspective, this study examines the influence of service recovery initiatives’ ease of use (i.e. ease of understanding and intuitive operations) and usefulness (i.e. recovery information fit-to-task and recovery completeness) on customers’ perceived justice of self-service recovery, which further affects their recovery satisfaction.
A structural equation modeling approach was employed to analyze empirical data collected via convenience sampling from 301 electronic commerce consumers. The results indicate that ease of understanding, recovery information fit-to-task, and recovery completeness are positively associated with one’s perceived justice, whereas intuitive operations have no significant effect on perceived justice. Additionally, customers’ perceived justice is positively related to their recovery satisfaction. The findings elicit several implications for theory and practice.
關鍵字(中) ★ 服務失誤
★ 服務補救
★ 自助服務補救
★ 補救措施
★ 知覺公平
★ 補救滿意度
關鍵字(英) ★ Service failure
★ Service recovery
★ Self-service recovery
★ Recovery initiatives
★ Perceived justice
★ Recovery satisfaction
論文目次 目錄
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 vi
一、緒論 1
1-1 研究動機 1
1-2 研究目的 3
1-3 研究流程 5
二、文獻回顧 6
2-1 服務失誤 6
2-2 服務補救 7
2-3 服務補救措施 9
2-4 知覺公平 11
2-5 假說推論 13
三、研究方法 18
3-1 研究架構 19
3-2 研究假說 20
3-3 研究變數定義與衡量 21
3-4 資料分析方法 25
四、研究結果 26
4-1 樣本屬性分析 26
4-2 衡量模型分析 31
4-3 結構方程模型 42
4-4 共同方法變異 47
五、研究結論與建議 48
5-1 研究貢獻 51
5-2 管理意涵 53
5-3 研究限制與未來展望 55
參考文獻 56
參考文獻 Adams, J. S. (1965). Inequity in social exchange. In L. Berkowitz (Ed.), Advances in Experimental Social Psychology (Vol. 2, pp. 267-299). New York: Academic Press.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.
Azemi, Y., Ozuem, W., Howell, K. E., & Lancaster, G. (2019). An exploration into the practice of online service failure and recovery strategies in the Balkans. Journal of Business Research, 94(1), 420-431.
Bagherzadeh, R., Rawal, M., Wei, S., & Torres, J. L. S. (2020). The journey from customer participation in service failure to co-creation in service recovery. Journal of Retailing Consumer Services, 54, 1-10.
Bagozzi, R. P., & Heatherton, T. F. (1994). A general approach to representing multifaceted personality constructs: Application to state self‐esteem. Structural Equation Modeling: a Multidisciplinary Journal, 1(1), 35-67.
Bagozzi, R. P., & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models. Journal of the Academy of Marketing Science, 40(1), 8-34.
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588-606.
Bitner, M. J., Booms, B. H., & Tetreault, M. S. (1990). The service encounter: diagnosing favorable and unfavorable incidents. Journal of Marketing, 54(1), 71-84.
Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach′s alpha. Bmj, 314(7080), 572-572.
Blodgett, J. G., Hill, D. J., & Tax, S. S. (1997). The effects of distributive, procedural, and interactional justice on postcomplaint behavior. Journal of Retailing, 73(2), 185-210.
Blut, M., Wang, C., & Schoefer, K. (2016). Factors influencing the acceptance of self-service technologies: A meta-analysis. Journal of Service Research, 19(4), 396-416.
Bollen, K. A. (1989). A new incremental fit index for general structural equation models. Sociological Methods Research, 17(3), 303-316.
Brislin, R. W. (1986). The wording and translation of research instruments. In W. L. Lonner & J. W. Berry (Eds.), Field Methods in Cross-Cultural Psychology (Vol. 8, pp. 137-164). Thousand Oaks, CA: Sage Publications.
Brown, J. D. (1986). Evaluations of self and others: Self-enhancement biases in social judgments. Social Cognition, 4(4), 353-376.
Buttle, F., & Burton, J. (2002). Does service failure influence customer loyalty? Journal of Consumer Behaviour, 1(3), 217-227.
Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. New York: Psychology Press.
Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81-105.
Chebat, J.-C., & Slusarczyk, W. (2005). How emotions mediate the effects of perceived justice on loyalty in service recovery situations: an empirical study. Journal of Business Research, 58(5), 664-673.
Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295-336.
Collier, J. E., & Bienstock, C. C. (2006). Measuring service quality in e-retailing. Journal of Service Research, 8(3), 260-275.
Colquitt, J. A. (2001). On the dimensionality of organizational justice: a construct validation of a measure. Journal of Applied Psychology, 86(3), 386-400.
Colquitt, J. A., & Rodell, J. B. (2011). Justice, trust, and trustworthiness: A longitudinal analysis integrating three theoretical perspectives. Academy of Management Journal, 54(6), 1183-1206.
Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78(1), 98-104.
Crisafulli, B., & Singh, J. (2017). Service failures in e-retailing: Examining the effects of response time, compensation, and service criticality. Computers in Human Behavior, 77, 413-424.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
Cropanzano, R., & Ambrose, M. L. (2001). Procedural and distributive justice are more similar than you think: A monistic perspective and a research agenda. In J. Greenberg & R. Cropanzano (Eds.), Advances in Organizational Justice (pp. 119-151). Stanford, CA: Stanford University Press.
Davidow, M. (2000). The bottom line impact of organizational responses to customer complaints. Journal of Hospitality Tourism Research, 24(4), 473-490.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
De Matos, C. A., Rossi, C. A. V., Veiga, R. T., & Vieira, V. A. (2009). Consumer reaction to service failure and recovery: the moderating role of attitude toward complaining. Journal of Services Marketing, 23(7), 462-475.
Dedeke, A. N. (2016). Travel web-site design: Information task-fit, service quality and purchase intention. Tourism Management, 54, 541-554.
del Río-Lanza, A. B., Vázquez-Casielles, R., & Díaz-Martín, A. M. (2009). Satisfaction with service recovery: Perceived justice and emotional responses. Journal of Business Research, 62(8), 775-781.
Ding, M.-C., & Lii, Y.-S. (2016). Handling online service recovery: Effects of perceived justice on online games. Telematics and Informatics, 33(4), 881-895.
Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument. MIS Quarterly, 18(4), 453-461.
Dong, B., Evans, K. R., & Zou, S. (2008). The effects of customer participation in co-created service recovery. Journal of the Academy of Marketing Science, 36(1), 123-137.
Drost, E. A. (2011). Validity and reliability in social science research. Education Research and Perspectives, 38(1), 105-123.
eMarketer. (2019). What makes a bad shopping experience? Retrieved from https://reurl.cc/1YoZLD
Evans, J. R., & Mathur, A. (2005). The value of online surveys. Internet Research, 15(2), 195-219.
Federation, N. R. (2021). United States: monthly year-over-year retail sales development 2020-2021. Retrieved from https://reurl.cc/W3Xrge
Field, A. P. (2005). Is the meta-analysis of correlation coefficients accurate when population correlations vary? Psychological Methods, 10(4), 444-467.
Forbes. (2021). Pandemic shift is permanent, e-commerce to hit $1 trillion in 2022. Retrieved from https://reurl.cc/O0kA9r
Forbes, L. P., Kelley, S. W., & Hoffman, K. D. (2005). Typologies of e‐commerce retail failures and recovery strategies. Journal of Services Marketing, 19(5), 280-292.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
Gee, R., Coates, G., & Nicholson, M. (2008). Understanding and profitably managing customer loyalty. Marketing Intelligence Planning, 26(4), 359-374.
Gefen, D., & Straub, D. (2000). The relative importance of perceived ease of use in IS adoption: A study of e-commerce adoption. Journal of the Association for Information Systems, 1(8), 1-30.
Golafshani, N. (2003). Understanding reliability and validity in qualitative research. The Qualitative Report, 8(4), 597-607.
Goodwin, C., & Ross, I. (1992). Consumer responses to service failures: Influence of procedural and interactional fairness perceptions. Journal of Business Research, 25(2), 149-163.
Greenberg, J. (1993). The social side of fairness: Interpersonal and informational classes of organizational justice. Justice in the Workplace: Approaching Fairness in Human Resource Management, 79-103.
Gronroos, C. (1988). Service quality: The six criteria of good perceived service. Review of Business, 9(3), 10-18.
Ha, J., & Jang, S. S. (2009). Perceived justice in service recovery and behavioral intentions: The role of relationship quality. International Journal of Hospitality Management, 28(3), 319-327.
Hair, J. F. (2009). Multivariate data analysis. Upper Saddle River: Prentice Hall.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. (2006). Multivariate data analysis. Upper Saddle River: Pearson Prentice Hall.
Harman, H. H. (1976). Modern factor analysis. Chicago: University of Chicago Press.
Harris, K. E., Mohr, L. A., & Bernhardt, K. L. (2006). Online service failure, consumer attributions and expectations. Journal of Services Marketing, 20(7), 453-458.
Harrison‐Walker, L. J. (2012). The role of cause and affect in service failure. Journal of Services Marketing, 26(2), 115-123.
Hartmann, J., Sutcliffe, A., & Angeli, A. D. (2008). Towards a theory of user judgment of aesthetics and user interface quality. ACM Transactions on Computer-Human Interaction, 15(4), 1-30.
Haynes, S. N., Richard, D., & Kubany, E. S. (1995). Content validity in psychological assessment: A functional approach to concepts and methods. Psychological Assessment, 7(3), 238-247.
Hazée, S., Van Vaerenbergh, Y., & Armirotto, V. (2017). Co-creating service recovery after service failure: The role of brand equity. Journal of Business Research, 74, 101-109.
Hess Jr, R. L., Ganesan, S., & Klein, N. M. (2003). Service failure and recovery: The impact of relationship factors on customer satisfaction. Journal of the Academy of Marketing Science, 31(2), 127-145.
Hoffman, K. D., & Kelley, S. W. (2000). Perceived justice needs and recovery evaluation: a contingency approach. European Journal of Marketing, 34(3/4), 418-433.
Hoffman, K. D., Kelley, S. W., & Rotalsky, H. M. (1995). Tracking service failures and employee recovery efforts. Journal of Services Marketing, 9(2), 49-61.
Hofstede, G. (1984). Culture′s consequences: International differences in work-related values. Beverly Hills, CA: Sage.
Holloway, B. B., & Beatty, S. E. (2003). Service failure in online retailing: A recovery opportunity. Journal of Service Research, 6(1), 92-105.
Holloway, B. B., Wang, S., & Parish, J. T. (2005). The role of cumulative online purchasing experience in service recovery management. Journal of Interactive Marketing, 19(3), 54-66.
Homans, G. C. (1961). Social behavior: Its elementary forms: New York: Harcourt, Brace.
Hu, L.-T., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 76-99): Sage Publications.
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: a Multidisciplinary Journal, 6(1), 1-55.
Huang, R., & Ha, S. (2020). The effects of warmth-oriented and competence-oriented service recovery messages on observers on online platforms. Journal of Business Research, 121, 616-627.
Ipsos. (2020). Change in e-commerce usage to purchase products normally bought in-store due to coronavirus (COVID-19). Retrieved from https://reurl.cc/5r25a7
Jung, N. Y., & Seock, Y.-K. (2017). Effect of service recovery on customers’ perceived justice, satisfaction, and word-of-mouth intentions on online shopping websites. Journal of Retailing Consumer Services, 37, 23-30.
Kassim, N., & Abdullah, N. A. (2010). The effect of perceived service quality dimensions on customer satisfaction, trust, and loyalty in e‐commerce settings. Asia Pacific Journal of Marketing Logistics, 22(3), 351-371.
Kau, A. K., & Loh, E. W. Y. (2006). The effects of service recovery on consumer satisfaction: a comparison between complainants and non‐complainants. Journal of Services Marketing, 20(2), 101-111.
Kim, H., & Niehm, L. S. (2009). The impact of website quality on information quality, value, and loyalty intentions in apparel retailing. Journal of Interactive Marketing, 23(3), 221-233.
Kim, S., & Stoel, L. (2004). Dimensional hierarchy of retail website quality. Information & Management, 41(5), 619-633.
Kranzbühler, A. M., Kleijnen, M. H., Morgan, R. E., & Teerling, M. (2018). The multilevel nature of customer experience research: an integrative review and research agenda. International Journal of Management Reviews, 20(2), 433-456.
Kumar, R. L., Smith, M. A., & Bannerjee, S. (2004). User interface features influencing overall ease of use and personalization. Information & Management, 41(3), 289-302.
Kuo, Y.-F., & Wu, C.-M. (2012). Satisfaction and post-purchase intentions with service recovery of online shopping websites: Perspectives on perceived justice and emotions. International Journal of Information Management, 32(2), 127-138.
Liao, H. (2007). Do it right this time: The role of employee service recovery performance in customer-perceived justice and customer loyalty after service failures. Journal of Applied Psychology, 92(2), 475-489.
Lin, H. H., Wang, Y. S., & Chang, L. K. (2011). Consumer responses to online retailer′s service recovery after a service failure. Managing Service Quality, 21, 511-534.
Lin, W.-B. (2006). Correlation between personality characteristics, situations of service failure, customer relation strength and remedial recovery strategy. Services Marketing Quarterly, 28(1), 55-88.
Loiacono, E. T., Watson, R. T., & Goodhue, D. L. (2002). WebQual: A measure of website quality. Marketing Theory Applications, 13(3), 432-438.
Loiacono, E. T., Watson, R. T., & Goodhue, D. L. (2007). WebQual: An instrument for consumer evaluation of web sites. International Journal of Electronic Commerce, 11(3), 51-87.
MacCallum, R. C., & Hong, S. (1997). Power analysis in covariance structure modeling using GFI and AGFI. Multivariate Behavioral Research, 32(2), 193-210.
Manu, C., Sreejesh, S., & Paul, J. (2021). Tell us your concern, and we shall together address! Role of service booking channels and brand equity on post-failure outcomes. International Journal of Hospitality Management, 96(3), 102982. doi:10.1016/j.ijhm.2021.102982
Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit indexes in confirmatory factor analysis: The effect of sample size. Psychological Bulletin, 103(3), 391-410.
Mattila, A. S. (2001). The effectiveness of service recovery in a multi‐industry setting. Journal of Services Marketing, 15(7), 583-596.
Mattila, A. S., & Patterson, P. G. (2004). Service recovery and fairness perceptions in collectivist and individualist contexts. Journal of Service Research, 6(4), 336-346.
Maxham III, J. G. (2001). Service recovery′s influence on consumer satisfaction, positive word-of-mouth, and purchase intentions. Journal of Business Research, 54(1), 11-24.
Maxham III, J. G., & Netemeyer, R. G. (2003). Firms reap what they sow: the effects of shared values and perceived organizational justice on customers’ evaluations of complaint handling. Journal of Marketing, 67(1), 46-62.
McColl-Kennedy, J. R., & Sparks, B. A. (2003). Application of fairness theory to service failures and service recovery. Journal of Service Research, 5(3), 251-266.
McCollough, M. A., Berry, L. L., & Yadav, M. S. (2000). An empirical investigation of customer satisfaction after service failure and recovery. Journal of Service Research, 3(2), 121-137.
McDonald, R. P., & Ho, M.-H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64-82.
Meuter, M. L., Ostrom, A. L., Roundtree, R. I., & Bitner, M. J. (2000). Self-service technologies: understanding customer satisfaction with technology-based service encounters. Journal of Marketing, 64(3), 50-64.
Miller, J. L., Craighead, C. W., & Karwan, K. R. (2000). Service recovery: a framework and empirical investigation. Journal of Operations Management, 18(4), 387-400.
Nunnally, J. C. (1978). An overview of psychological measurement. Clinical Diagnosis of Mental Disorders, 97-146.
O′Leary-Kelly, S. W., & Vokurka, R. J. (1998). The empirical assessment of construct validity. Journal of Operations Management, 16(4), 387-405.
Ozuem, W., Patel, A., Howell, K. E., & Lancaster, G. (2017). An exploration of consumers′ response to online service recovery initiatives. International Journal of Market Research, 59(1), 97-115.
Patterson, P. G., Cowley, E., & Prasongsukarn, K. (2006). Service failure recovery: The moderating impact of individual-level cultural value orientation on perceptions of justice. International Journal of Research in Marketing, 23(3), 263-277.
Pee, L. G., Jiang, J., & Klein, G. (2019). E-store loyalty: Longitudinal comparison of website usefulness and satisfaction. International Journal of Market Research, 61(2), 178-194.
Peter, J. P. (1979). Reliability: A review of psychometric basics and recent marketing practices. Journal of Marketing Research, 16(1), 6-17.
Peter, J. P. (1981). Construct validity: A review of basic issues and marketing practices. Journal of Marketing Research, 18(2), 133-145.
Piercy, N., & Archer-Brown, C. (2014). Online service failure and propensity to suspend offline consumption. The Service Industries Journal, 34(8), 659-676.
Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer acceptance of online banking: an extension of the technology acceptance model. Internet Research, 14(3), 224-235.
Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903.
Rawls, J. (1971). A theory of justice. Cambridge, MA: Harvard University Press.
Rita, P., Oliveira, T., & Farisa, A. (2019). The impact of e-service quality and customer satisfaction on customer behavior in online shopping. Heliyon, 5(10), 1-14.
Robertson, N., McQuilken, L., & Kandampully, J. (2012). Consumer complaints and recovery through guaranteeing self‐service technology. Journal of Consumer Behaviour, 11(1), 21-30.
Schoefer, K. (2008). The role of cognition and affect in the formation of customer satisfaction judgements concerning service recovery encounters. Journal of Consumer Behaviour, 7(3), 210-221.
Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of Educational Research, 99(6), 323-338.
Shen, C.-C., & Chiou, J.-S. (2010). The impact of perceived ease of use on Internet service adoption: The moderating effects of temporal distance and perceived risk. Computers in Human Behavior, 26(1), 42-50.
Singh, J., & Crisafulli, B. (2016). Managing online service recovery: procedures, justice and customer satisfaction. Journal of Service Theory and Practice, 26(6), 764-787.
Siu, N. Y.-M., Zhang, T. J.-F., & Yau, C.-Y. J. (2013). The roles of justice and customer satisfaction in customer retention: A lesson from service recovery. Journal of Business Ethics, 114(4), 675-686.
Smith, A. K., Bolton, R. N., & Wagner, J. (1999). A model of customer satisfaction with service encounters involving failure and recovery. Journal of Marketing Research, 36(3), 356-372.
Stojmenovic, M., Biddle, R., Grundy, J., & Farrell, V. (2019). The influence of textual and verbal word-of-mouth on website usability and visual appeal. The Journal of Supercomputing, 75(4), 1783-1830.
Sun, J., Yang, Z., Wang, Y., & Zhang, Y. (2015). Rethinking e-commerce service quality: does website quality still suffice? Journal of Computer Information Systems, 55(4), 62-72.
Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach′s alpha. International Journal of Medical Education, 2, 53-55.
Tax, S. S., Brown, S. W., & Chandrashekaran, M. (1998). Customer evaluations of service complaint experiences: implications for relationship marketing. Journal of Marketing, 62(2), 60-76.
Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1-10.
Udo, G. J., Bagchi, K. K., & Kirs, P. J. (2010). An assessment of customers’e-service quality perception, satisfaction and intention. International Journal of Information Management, 30(6), 481-492.
Ullman, M. T. (2001). The neural basis of lexicon and grammar in first and second language: The declarative/procedural model. Bilingualism, 4(2), 105-122.
Vázquez-Casielles, R., Iglesias, V., & Varela-Neira, C. (2017). Co-creation and service recovery process communication: effects on satisfaction, repurchase intentions, and word of mouth. Service Business, 11(2), 321-343.
Vázquez‐Casielles, R., Suarez Alvarez, L., & Diaz Martin, A. M. (2010). Perceived justice of service recovery strategies: Impact on customer satisfaction and quality relationship. Psychology Marketing, 27(5), 487-509.
Wang, C. L., & Ahmed, P. K. (2004). The development and validation of the organisational innovativeness construct using confirmatory factor analysis. European Journal of Innovation Management, 7(4), 303-313.
Wang, Y.-S., Wu, S.-C., Lin, H.-H., & Wang, Y.-Y. (2011). The relationship of service failure severity, service recovery justice and perceived switching costs with customer loyalty in the context of e-tailing. International Journal of Information Management, 31(4), 350-359.
Webster, C., & Sundaram, D. S. (1998). Service consumption criticality in failure recovery. Journal of Business Research, 41(2), 153-159.
Wei, C., Liu, M. W., & Keh, H. T. (2020). The road to consumer forgiveness is paved with money or apology? The roles of empathy and power in service recovery. Journal of Business Research, 118, 321-334.
Wirtz, J., & Mattila, A. S. (2004). Consumer responses to compensation, speed of recovery and apology after a service failure. International Journal of Service Industry Management, 15(2), 150-166.
Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85-102.
Wolfinbarger, M., & Gilly, M. C. (2001). Shopping online for freedom, control, and fun. California Management Review, 43(2), 34-55.
Yang, Z., & Jun, M. (2002). Consumer perception of e-service quality: from internet purchaser and non-purchaser perspectives. Journal of Business Strategies, 19(1), 19-41.
Zhu, Z., Nakata, C., Sivakumar, K., & Grewal, D. (2013). Fix it or leave it? Customer recovery from self-service technology failures. Journal of Retailing, 89(1), 15-29.
指導教授 周恩頤(En-Yi Chou) 審核日期 2021-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明