博碩士論文 107521606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.136.23.132
姓名 范海金(Vando Gusti Al Hakim)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 實體機器人於數位學習劇場框架下的設計與實作以及其對情境學習中的學習動機與成效的影響
(Design and Implement a Tangible Robot with a Digital Theater for Situational Learning to Improve Learning Motivation and Performance)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在教育戲劇中,學生必須嘗試解決現實世界的問題。然而,在演出過程中,常常沒人注意到演員有犯錯。因此,演員們可能學習到不正確的知識。而且,學生通常不是專業演員,他們的表演,尤其是沒有情緒互動的部分,通常也不會吸引觀眾的眼光。另一方面,因為機器人可以促進好奇心,參與動機與即時性的回饋,它可以做為一個有趣的演員使得教育戲劇更有吸引力。另外,實體的互動可以使得學生以沉浸式互動方式學習,使得學生覺得表演更有趣。因此,本研究提出一個實體機器人作為演員,於數位學習劇場提供的虛擬舞台下的情境學習方法,機器人在劇本中可能擔當導師或守門員的角色,使得學生必須隨時專注於戲劇流程。此外,本研究也提出一個學習方式探討機器人在劇場環境中不同互動模式下對學習動機與學習效果的影響。
本研究中,實驗對象為64個國中九年級生,使用英語作為教學科目,採用機器人與數位情境式學習環境。實驗組包含33個學生,使用劇場與具實體互動的機器人包含觸摸互動,手勢辨識以及對話互動。而對照組則使用劇場與機器人,但不包含前述互動,只會根據劇本進行簡單口語互動。實驗顯示具實體互動的機器人比不具實體互動的機器人顯著提升學習成效。問卷也顯示實驗組學生有效高學習動機與覺得演出過程中有較高的真實性。而且,基於觀察,本研究發現情境與回饋具有較高隨機性時,觀眾與演員都會保有較高專注力,也提升了長期使用機器人演員在數位情境學習環境中的使用動機。
摘要(英) When learning in a drama for situational learning, students need to solve the simulated problems are encountered in the real world. However, during drama performing, no one would notice the mistakes made by the actors. Consequently, they might not learn the correct knowledge or learning materials in drama scripts. Also, since students generally are not professional performers, the engagement of student actors on drama performing and audience’s interest on watching may be decreased if the drama activities are not engaging in situational interaction. On the other hand, due to the curiosity, engagement, and instant feedback that a robot can brings, it can become an interesting actor companion to make drama performance more attractive. Besides, physical interaction offered by the robot can make students learn through embodied interactions according to the situation and time, thus making them have fun in performing. Therefore, this study aims to design and implement a tangible robot as an actor performing situational learning with students in the scenario provided by a designed digital theater. The robot acts as a mentor or a gate-keeping guard in learning script, so that students need to focus on learning materials embedded in the drama. Additionally, this study proposes a learning approach to explore learning motivation and performance of students learn with different interaction modes of robot actor within a digital situational learning environment.
In this study, 64 ninth graders in an English as second language course of junior high school Taiwan were employed to learn with a robot actor in a digital situational learning environment. The experimental group consists of 33 students used the digital theater with tangible robot touch interaction, gesture interaction, and dialog conversation. While the control group used the digital theater with robot non-touch interaction, non-gesture interaction, only context-related oral interaction. The experiment results showed a robot with more tangible actions had significant impact on the enhancement of learning performance than one without tangible interaction. Questionnaire results revealed that students’ learning motivation and authenticity were improved when a robot actor with tangible interactive modes was employed inside the digital theater. Also, based on the observations, we conclude that dynamic scenario, robot’s unexpected and randomness feedbacks, evaluation from system, and audience participation may play a vital role to maintain students’ engagement and motivation for long-term use of robot actor with tangible interaction inside digital situational learning environment.
關鍵字(中) ★ 社交機器人
★ 實體互動
★ 數位學習劇場
★ 情境式學習
關鍵字(英) ★ Social Robot
★ Tangible Interaction
★ Digital Theater
★ Situational Learning
論文目次 摘要 i
Abstract ii
Table of Contents iii
List of Figures v
List of Tables vi
CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Research Motivation 3
1.3 Research Objectives 4
1.4 Research Hypothesis 4
1.5 Research Problems and Countermeasure 5
CHAPTER 2 RELATED WORK 7
2.1 Situational Learning 7
2.2 Robots for Learning 8
2.3 Robot Actor in Theater 12
2.4 Tangible Interaction with Robots 14
CHAPTER 3 LEARNING APPROACH AND MODEL 16
3.1 Development of Learning Approach 16
3.2 Proposed Learning Model 20
CHAPTER 4 DESIGN AND IMPLEMENTATION OF THE SYSTEM 22
4.1 System Design 22
4.1.1 Extended Digital Theater Design 22
4.1.2 Robot Actor Design 25
4.1.3 Tablet Control Design 26
4.2 System Implementation 27
4.2.1 Environmental Setting in the Classroom 28
4.2.2 Digital Theater App 30
4.2.3 Robot App 32
4.2.4 Tablet Control App 43
CHAPTER 5 EXPERIMENTAL DESIGN 50
5.1 Participants 50
5.2 Experimental Procedure 50
5.3 Measurement Tools 54
CHAPTER 6 EXPERIMENTAL RESULT AND DISCUSSION 55
6.1 Pre-test and Post-test Sheets Result 55
6.2 Questionnaires Independent Sample t-test Result 58
6.3 Observation 61
6.4 Discussion 62
CHAPTER 7 CONCLUSION AND FUTURE WORK 65
7.1 Conclusion 65
7.2 Future Work 65
References 67
Appendix I. Drama Scripts 73
Appendix II. Pre-test and Post-test Sheets 77
Appendix III. Questionnaire Sheet 78
參考文獻 Ahmad, M. I., Mubin, O., Shahid, S., & Orlando, J. (2019). Robot’s adaptive emotional feedback sustains children’s social engagement and promotes their vocabulary learning: a long-term child–robot interaction study. Adaptive Behavior, 27(4), 243-266.
Ahtinen, A., & Kaipainen, K. (2020, April). Learning and Teaching Experiences with a Persuasive Social Robot in Primary School–Findings and Implications from a 4-Month Field Study. In International Conference on Persuasive Technology (pp. 73-84). Springer, Cham.
Al Hakim, V. G., Yang, S. H., Tsai, T. H., Lo, W. H., Wang, J. H., Hsu, T. C., & Chen, G. D. (2020, July). Interactive Robot as Classroom Learning Host to Enhance Audience Participation in Digital Learning Theater. In 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT) (pp. 95-97). IEEE.
Antle, A. N., & Wise, A. F. (2013). Getting down to details: Using theories of cognition and learning to inform tangible user interface design. Interacting with Computers, 25(1), 1-20.
Bainbridge, W. A., Hart, J. W., Kim, E. S., & Scassellati, B. (2011). The benefits of interactions with physically present robots over video-displayed agents. International Journal of Social Robotics, 3(1), 41-52.
Barab, S. A., Gresalfi, M., & Ingram-Goble, A. (2010). Transformational play: Using games to position person, content, and context. Educational researcher, 39(7), 525-536.
Barnes, J., FakhrHosseini, S. M., Vasey, E., Park, C. H., & Jeon, M. (2020). Child-robot theater: Engaging elementary students in informal STEAM education using robots. IEEE Pervasive Computing, 19(1), 22-31.
Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., & Tanaka, F. (2018). Social robots for education: A review. Science robotics, 3(21).
Bonarini, A. (2014, August). Studying people′s emotional responses to robot′s movements in a small scene. In The 23rd IEEE International Symposium on Robot and Human Interactive Communication (pp. 417-422). IEEE.
Bravo Sánchez, F. Á., González Correal, A. M., & Guerrero, E. G. (2017). Interactive drama with robots for teaching non-technical subjects. Journal of Human-Robot Interaction, 6(2), 48-69.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational researcher, 18(1), 32-42.
Brown, L., & Howard, A. M. (2013, October). Engaging children in math education using a socially interactive humanoid robot. In 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (pp. 183-188). IEEE.
Cabibihan, J. J., Javed, H., Ang, M., & Aljunied, S. M. (2013). Why robots? A survey on the roles and benefits of social robots in the therapy of children with autism. International journal of social robotics, 5(4), 593-618.
Chang, C. W., Lee, J. H., Wang, C. Y., & Chen, G. D. (2010). Improving the authentic learning experience by integrating robots into the mixed-reality environment. Computers & Education, 55(4), 1572-1578.
Chang, Y. H., Lin, P. R., & Lu, Y. T. (2020). Development of a Kinect-Based English Learning System Based on Integrating the ARCS Model with Situated Learning. Sustainability, 12(5), 2037.
Chen, C. H., & Hwang, G. J. (2017). Effects of the Team Competition-Based Ubiquitous Gaming Approach on Students? Interactive Patterns, Collective Efficacy and Awareness of Collaboration and Communication. Journal of Educational Technology & Society, 20(1), 87.
Chen, C. W., Chen, B. R., Tseng, S. P., & Wang, J. F. (2018, October). Design and Implementation of Sentence Similarity Matching and Multimedia Feedback for Intelligent Pharmacy on Zenbo Robot. In 2018 International Conference on Orange Technologies (ICOT) (pp. 1-4). IEEE.
Chin, K. Y., Hong, Z. W., & Chen, Y. L. (2014). Impact of using an educational robot-based learning system on students’ motivation in elementary education. IEEE Transactions on learning technologies, 7(4), 333-345.
Cohen, J. (1992). Statistical power analysis. Current directions in psychological science, 1(3), 98-101.
Conti, D., Cirasa, C., Di Nuovo, S., & Di Nuovo, A. (2020). “Robot, tell me a tale!”: A social robot as tool for teachers in kindergarten. Interaction Studies, 21(2), 220-242.
Dautenhahn, K., Werry, I., Salter, T., & Boekhorst, R. T. (2003, July). Towards adaptive autonomous robots in autism therapy: Varieties of interactions. In Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No. 03EX694) (Vol. 2, pp. 577-582). IEEE.
de Wit, J., Schodde, T., Willemsen, B., Bergmann, K., de Haas, M., Kopp, S., ... & Vogt, P. (2018, February). The effect of a robot′s gestures and adaptive tutoring on children′s acquisition of second language vocabularies. In Proceedings of the 2018 ACM/IEEE international conference on human-robot interaction (pp. 50-58).
Ferrari, E., Robins, B., & Dautenhahn, K. (2009, September). Therapeutic and educational objectives in robot assisted play for children with autism. In RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Interactive Communication (pp. 108-114). IEEE.
Fitter, N. T., & Kuchenbecker, K. J. (2019). How does it feel to clap hands with a robot?. International Journal of Social Robotics, 1-15.
Gliem, J. A., & Gliem, R. R. (2003). Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales. Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education.
Gordon, G., Breazeal, C., & Engel, S. (2015, March). Can children catch curiosity from a social robot?. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction (pp. 91-98).
Gulikers, J., Bastiaens, T., & Kirschner, P. (2006). Authentic assessment, student and teacher perceptions: the practical value of the five‐dimensional framework. Journal of Vocational Education and Training, 58(3), 337-357.
Herrington, J., & Oliver, R. (1995). Critical characteristics of situated learning: Implications for the instructional design of multimedia.
Hirano, T., Shiomi, M., Iio, T., Kimoto, M., Tanev, I., Shimohara, K., & Hagita, N. (2018). How do communication cues change impressions of human–robot touch interaction?. International Journal of Social Robotics, 10(1), 21-31.
Hoffman, G. (2011, July). On stage: robots as performers. In RSS 2011 Workshop on Human-Robot Interaction: Perspectives and Contributions to Robotics from the Human Sciences. Los Angeles, CA (Vol. 1, p. 21).
Hoffman, G., Kubat, R., & Breazeal, C. (2008, August). A hybrid control system for puppeteering a live robotic stage actor. In RO-MAN 2008-The 17th IEEE International Symposium on Robot and Human Interactive Communication (pp. 354-359). IEEE.
Hornecker, E., & Buur, J. (2006, April). Getting a grip on tangible interaction: a framework on physical space and social interaction. In Proceedings of the SIGCHI conference on Human Factors in computing systems (pp. 437-446).
Hsieh, C. F., Lin, Y. R., Lin, T. Y., Lin, Y. H., & Chiang, M. L. (2019, October). Apply Kinect and Zenbo to Develop Interactive Health Enhancement System. In 2019 8th International Conference on Innovation, Communication and Engineering (ICICE) (pp. 165-168). IEEE.
Huang, C. S., Yang, S. J., Chiang, T. H., & Su, A. Y. (2016). Effects of situated mobile learning approach on learning motivation and performance of EFL students. Journal of Educational Technology & Society, 19(1), 263-276.
Hwang, G. J., & Wang, S. Y. (2016). Single loop or double loop learning: English vocabulary learning performance and behavior of students in situated computer games with different guiding strategies. Computers & Education, 102, 188-201.
Hwang, W. Y., Chen, H. R., Chen, N. S., Lin, L. K., & Chen, J. W. (2018). Learning behavior analysis of a ubiquitous situated reflective learning system with application to life science and technology teaching. Journal of Educational Technology & Society, 21(2), 137-149.
Ishii, H. (2007). Tangible user interfaces. Human-Computer Interaction: Design Issues, Solutions, and Applications, 141-157.
Jones, A., & Castellano, G. (2018). Adaptive robotic tutors that support self-regulated learning: A longer-term investigation with primary school children. International Journal of Social Robotics, 10(3), 357-370.
Kanda, T., Hirano, T., Eaton, D., & Ishiguro, H. (2004). Interactive robots as social partners and peer tutors for children: A field trial. Human–Computer Interaction, 19(1-2), 61-84.
Kennedy, J., Baxter, P., Senft, E., & Belpaeme, T. (2016, March). Social robot tutoring for child second language learning. In 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 231-238). IEEE.
Kerawalla, L., Luckin, R., Seljeflot, S., & Woolard, A. (2006). “Making it real”: exploring the potential of augmented reality for teaching primary school science. Virtual reality, 10(3-4), 163-174.
Kidd, C. D., & Breazeal, C. (2004, September). Effect of a robot on user perceptions. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566) (Vol. 4, pp. 3559-3564). IEEE.
Kim, H. Y. (2013). Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restorative Dentistry and Endodontics 38, 52–54.
Köse, H., Uluer, P., Akalın, N., Yorgancı, R., Özkul, A., & Ince, G. (2015). The effect of embodiment in sign language tutoring with assistive humanoid robots. International Journal of Social Robotics, 7(4), 537-548.
Laamanen, M., Jormanainen, I., & Sutinen, E. (2015, November). Theater robotics for human technology education. In Proceedings of the 15th Koli Calling Conference on Computing Education Research (pp. 127-131).
Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge university press.
Leite, I., Castellano, G., Pereira, A., Martinho, C., & Paiva, A. (2014). Empathic robots for long-term interaction. International Journal of Social Robotics, 6(3), 329-341.
Lemaignan, S., Gharbi, M., Mainprice, J., Herrb, M., & Alami, R. (2012, March). Roboscopie: A theatre performance for a human and a robot [video abstract]. In 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 427-427). IEEE.
Leyzberg, D., Spaulding, S., Toneva, M., & Scassellati, B. (2012). The physical presence of a robot tutor increases cognitive learning gains. In Proceedings of the annual meeting of the cognitive science society (Vol. 34, No. 34).
Li, J. (2015). The benefit of being physically present: A survey of experimental works comparing copresent robots, telepresent robots and virtual agents. International Journal of Human-Computer Studies, 77, 23-37.
Li, J. J., Ju, W., & Reeves, B. (2017). Touching a mechanical body: tactile contact with body parts of a humanoid robot is physiologically arousing. Journal of Human-Robot Interaction, 6(3), 118-130.
Lin, P. C., Mettrick, D., Hung, P. C., & Iqbal, F. (2019, April). Robot Computing for Music Visualization. In International Conference on Theory and Applications of Models of Computation (pp. 438-447). Springer, Cham.
Liu, Y. T., Lin, S. C., Wu, W. Y., Chen, G. D., & Chen, W. (2017). The digital interactive learning theater in the classroom for drama-based learning. In Proceedings of the 25th International Conference on Computers in Education (pp. 784-789). Asia-Pacific Society for Computers in Education.
Mayers, A. (2013). Introduction to statistics and SPSS in psychology. Harlow: Pearson Education Limited.
Michaud, F., Salter, T., Duquette, A., Mercier, H., Lauria, M., Larouche, H., & Larosse, F. (2007). Mobile robots engaging children in learning. CMBES Proceedings, 30.
Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & Dong, J. J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning, 1(209-0015), 13.
Murphy, R., Shell, D., Guerin, A., Duncan, B., Fine, B., Pratt, K., & Zourntos, T. (2011). A Midsummer Night’s Dream (with flying robots). Autonomous Robots, 30(2), 143-156.
Neumann, M. M. (2020). Social Robots and Young Children’s Early Language and Literacy Learning. Early Childhood Education Journal, 48(2), 157-170.
Okita, S. Y., Ng-Thow-Hing, V., & Sarvadevabhatla, R. (2009, September). Learning together: ASIMO developing an interactive learning partnership with children. In RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Interactive Communication (pp. 1125-1130). IEEE.
Powers, A., Kiesler, S., Fussell, S., & Torrey, C. (2007, March). Comparing a computer agent with a humanoid robot. In Proceedings of the ACM/IEEE international conference on Human-robot interaction (pp. 145-152).
Saerbeck, M., Schut, T., Bartneck, C., & Janse, M. D. (2010, April). Expressive robots in education: varying the degree of social supportive behavior of a robotic tutor. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 1613-1622).
Shiomi, M., Minato, T., & Ishiguro, H. (2017, November). Subtle reaction and response time effects in human-robot touch interaction. In International conference on social robotics (pp. 242-251). Springer, Cham.
Shiomi, M., Nakata, A., Kanbara, M., & Hagita, N. (2020). Robot Reciprocation of Hugs Increases Both Interacting Times and Self-disclosures. International Journal of Social Robotics, 1-9.
van den Berghe, R., Verhagen, J., Oudgenoeg-Paz, O., Van der Ven, S., & Leseman, P. (2019). Social robots for language learning: A review. Review of Educational Research, 89(2), 259-295.
Vogler, C. (2007). The Writer′s journey. Studio City, CA: Michael Wiese Productions.
Wainer, J., Feil-Seifer, D. J., Shell, D. A., & Mataric, M. J. (2007, August). Embodiment and human-robot interaction: A task-based perspective. In RO-MAN 2007-The 16th IEEE International Symposium on Robot and Human Interactive Communication (pp. 872-877). IEEE.
Wu, W. Y., Luo, Y. F., Huang, D. Y., Huang, C. W., Peng, Y. I., & Chen, G. D. (2015). A Self-Observable Learning Cinema in the Classroom. In The 23rd International Conference on Computers in Education (pp. 257-262). Asia-Pacific Society for Computers in Education.
Yu, R., Hui, E., Lee, J., Poon, D., Ng, A., Sit, K., ... & Woo, J. (2015). Use of a therapeutic, socially assistive pet robot (PARO) in improving mood and stimulating social interaction and communication for people with dementia: Study protocol for a randomized controlled trial. JMIR research protocols, 4(2), e45.
指導教授 蔡宗漢 陳國棟(Tsung-Han Tsai Gwo-Dong Chen) 審核日期 2021-3-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明