博碩士論文 108453015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.147.78.249
姓名 王希佩(Hsi-Pei Wang)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 以機器學習建構股價預測模型:以台灣股市為例
(Constructing stock price forecast models with machine learning:Evidence from Taiwan Stock Market)
相關論文
★ 不動產仲介業銷售住宅類別之成交預測模型—以不動產仲介S公司為例★ 應用文字探勘技術建構預測客訴問題類別機器學習模型
★ 以機器學習技術建構顧客回購率預測模型:以某手工皂原料電子商務網站為例★ 以機器學習方法建構財務危機之預測模型:以台灣上市櫃公司為例
★ 運用資料探勘技術於股票填息之預測模型:以台灣股市上市公司為例★ 運用資料探勘技術優化 次世代防火牆規則之研究
★ 應用資料探勘技術於電子病歷文本中識別相關新資訊★ 應用深度學習於藥品後市場監督:Twitter文本分類任務
★ 運用電子病歷與資料探勘技術建構腦中風病人心房顫動預測模型★ 考量特徵選取與隨機森林之遺漏值填補技術
★ 電子病歷縮寫消歧與一對多分類任務★ 運用Meta-path與注意力機制改善個人化穿搭推薦
★ 運用機器學習技術建構核保風險預測模型:以A公司為例★ 風扇壽命預測使用大數據分析-以 X 公司為例
★ 使用文字探勘與深度學習技術建置中風後肺炎之預測模型★ 利用文字探勘技術分析評論特徵因子對於體驗品評論有益性之影響:以IMDb 為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 投資一直是現代社會關注的議題,常見投資市場包含了銀行定存、外幣買賣、儲蓄險、基金、債劵、虛擬貨幣及股票,因為投資理財資訊越來越容易取得,使得更多人們透過理財提早規劃自己退休生活,讓自己達到財富自由,其中股票更是投資者投入最普遍的標的之一,大眾常在財經節目中聽取建議,找尋投資目標,但在下單的時間點,往往已經錯失投資的黃金機會,而導致血本無歸或是套牢在股海裡。
近年來隨著科技的進步,市面上開發出人工智慧新穎的投資工具,提供投資人使用,但往往建議投資人投資的股票,有時會因為證劵公司的私利,而提供投資者不是那麼公正的投資標的;故本研究利用公司股價(開盤價、最高價、最低價及收盤價)、基本面、技術面及籌碼面作為輸入變數,並以機器學習方法建立股市漲跌預測模型,如K-近鄰演算法 (k-nearest neighbors, kNN)、決策樹 (decision tree, DT)、支援向量機 (support vector machine, SVM)、隨機梯度下降法 (Stochastic gradient descent, SGD)、隨機森林 (Random Forest, RF)、人工神經網路 (Artificial Neural Network, ANN)、單純貝氏分類器 (Navie Bayes, NB)、邏輯式迴歸 (Logistic Regression, LGR)及AdaBoost (Adaptive Boosting)等工具,實驗結果整體表現以單純貝氏分類器最佳。
摘要(英) Investment has always been a topic of concern in modern society. Common investment markets include bank deposits, foreign currency trading, savings insurance, funds, bonds, virtual currencies, and stocks. Because investment and financial information becomes more and more accessible, many financial management tools have been developed. With the use of these tools, people can plan their retirement life and realize the freedom of wealth eariler. Investing in stocks is the most common for many investors. People often listen to financial suggestions and tips via audiovisual programs. However, at the time of placing an order, they often miss the critical time for investment, which leads to loss of money or being stuck in the stock market.
In recent years, with the advancement of science and technology, new investment tools with artificial intelligence techniques have been developed for investors to use, but stocks that investors are often recommended to invest in are sometimes not so fair to investors because of the private interests of securities companies. Therefore, this research uses the company’s stock price (e.g., opening price, highest price, lowest price and closing price), fundamental analysis, technical analysis, and chip analysis as input variables. The sample of this study uses the Taiwan Economic Journal Database. A number of machine learning methods have been used to build stock price prediction models, including K-nearest neighbor (kNN), decision tree (DT), support vector machine (SVM), stochastic gradient descent (SGD), random forest (RF), artificial neural network (ANN), navie Bayes (NB), logistic regression (LGR), adaptive boosting (AdaBoost). The best results of the experimental is navie Bayes have the great prediction.
關鍵字(中) ★ 機器學習
★ 股價預測
★ 單純貝氏分類器
★ 人工神經網路
★ 邏輯式迴歸
關鍵字(英)
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
第二章 文獻探討 5
第三章 研究方法 11
3.1 資料來源 13
3.2 資料預處理 13
3.3 研究變數 15
3.4 分析技術 22
3.5 評估指標 25
第四章 實驗分析 27
4.1 實驗設計 27
4.2 實驗結果 31
4.3 變數重要性排序 42
第五章 研究結論與建議 43
5.1 研究結論 43
5.2 研究限制 44
5.3 未來研究方向與建議 44
參考文獻 45
附錄 47
參考文獻 Barak, S., Arjmand, A., & Ortobelli, S. (2017). Fusion of multiple diverse predictors in stock market. Information Fusion, 36, 90-102.
Basak, S., Kar, S., Saha, S., Khaidem, L., & Dey, S. R. (2019). Predicting the direction of stock market prices using tree-based classifiers. The North American Journal of Economics and Finance, 47, 552-567.
Beyaz, E., Tekiner, F., Zeng, X.-j., & Keane, J. (2018). Comparing technical and fundamental indicators in stock price forecasting. Paper presented at the 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, United Kingdom.
Chen, M.-Y. (2012). Visualization and dynamic evaluation model of corporate financial structure with self-organizing map and support vector regression. Applied Soft Computing, 12(8), 2274-2288.
Chen, Y.-J., & Chen, Y.-M. (2013). A fundamental analysis-based method for stock market forecasting. Paper presented at the 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP), Beijing, China.
Chen, Y., & Hao, Y. (2017). A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction. Expert Systems with Applications, 80, 340-355.
Chen, Y., & Hao, Y. (2018). Integrating principle component analysis and weighted support vector machine for stock trading signals prediction. Neurocomputing, 321, 381-402.
Fu, X., Du, J., Guo, Y., Liu, M., Dong, T., & Duan, X. (2018). A Machine Learning Framework for Stock Selection. arXiv preprint arXiv.
Galindo, G., & Rengifo, E. (2016). Is Quality Investing Feasible in Frontier Markets Based on Publicly Available Financial Information? Handbook of Frontier Markets (pp. 245-267). London, UK: Elsevier.
Gordon, M. J. (1959). Dividends, Earnings, and Stock Prices. The Review of Economics and Statistics, 41(2), 99–105. https://doi.org/10.2307/1927792.
Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2018). Stock price prediction using support vector regression on daily and up to the minute prices. The Journal of finance and data science, 4(3), 183-201.
Khalid Alkhatib, Hassan Najadat, Ismail Hmeidi, & Mohammed K. Ali Shatnawi, (2013). Stock Price Prediction Using K-Nearest Neighbor (kNN) Algorithm. International Journal of Business, Humanities and Technology, Vol. 3, No. 3, (March, 2013), pp. 32-44.
Koesrindartoto, D. P., Aaron, A., Yusgiantoro, I., Dharma, W. A., & Arroisi, A. (2020). Who moves the stock market in an emerging country–Institutional or retail investors? Research in International Business and Finance, 51, 101061.
Kumar, I., Dogra, K., Utreja, C., & Yadav, P. (2018). A comparative study of supervised machine learning algorithms for stock market trend prediction. Paper presented at the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India.
Malkiel, B. G., & Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of Finance, 25(2), 383-417.
Namdari, A., & Li, Z. S. (2018). Integrating Fundamental and Technical Analysis of Stock Market through Multi-layer Perceptron. Paper presented at the 2018 IEEE Technology and Engineering Management Conference (TEMSCON), Evanston, IL, USA.
Park, K., Fang, Z., & Ha, Y. H. (2019). Stock and bond returns correlation in Korea: Local versus global risk during crisis periods. Journal of Asian Economics, 65, 101136.
Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259-268.
Shen, K.-Y., & Tzeng, G.-H. (2015). Combined soft computing model for value stock selection based on fundamental analysis. Applied Soft Computing, 37, 142-155.
Tan, Z., Yan, Z., & Zhu, G. (2019). Stock selection with random forest: An exploitation of excess return in the Chinese stock market. Heliyon, 5(8), e02310.
Tsai, L.-J., Shu, P.-G., & Chiang, S.-J. (2019). Foreign investors’ trading behavior and market conditions: Evidence from Taiwan. Journal of Multinational Financial Management, 100591.
Wafi, A. S., Hassan, H., & Mabrouk, A. (2015). Fundamental analysis vs technical analysis in the Egyptian stock exchange–Empirical study. International Journal of Business and Management Study–IJBMS, 2(2).
Weng, B., Ahmed, M. A., & Megahed, F. M. (2017). Stock market one-day ahead movement prediction using disparate data sources. Expert Systems with Applications, 79, 153-163.
Zhang, R., Lin, Z.-a., Chen, S., Lin, Z., & Liang, X. (2018). Multi-factor Stock Selection Model Based on Kernel Support Vector Machine. Journal of Mathematics Research, 10(5), 9-18.
Zhang, Y., Zeng, Q., Ma, F., & Shi, B. (2019). Forecasting stock returns: Do less powerful predictors help? Economic Modelling, 78, 32-39.
Zhou, F., Zhang, Q., Sornette, D., & Jiang, L. (2019). Cascading logistic regression onto gradient boosted decision trees for forecasting and trading stock indices. Applied Soft Computing, 84, 105747.
Zhong, X., & Enke, D. (2017). Forecasting daily stock market return using dimensionality reduction. Expert Systems with Applications, 67, 126-139.
指導教授 胡雅涵 審核日期 2021-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明