參考文獻 |
參考文獻
[1] “紡織業概況 - 產業資訊 - 經濟部工業局民生領域相關計畫.” https://www.tipo.org.tw/tc/about_textile_2.aspx (accessed May 10, 2021).
[2] “mgi-artificial-intelligence-discussion-paper.pdf.” Accessed: Mar. 31, 2021. [Online]. Available: https://www.mckinsey.com/~/media/mckinsey/industries/advanced%20electronics/our%20insights/how%20artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/mgi-artificial-intelligence-discussion-paper.ashx
[3] “報1 經濟部 提升紡織產業競爭優勢措施(M).pdf.”
[4] “102年度臺灣製MIT微笑產品生產工廠品質管理系統建置指引_衣服類產業.pdf.”
[5] T. Boone, R. Ganeshan, A. Jain, and N. R. Sanders, “Forecasting sales in the supply chain: Consumer analytics in the big data era,” Int. J. Forecast., vol. 35, no. 1, pp. 170–180, Jan. 2019, doi: 10.1016/j.ijforecast.2018.09.003.
[6] G. L. Lilien, “The B2B Knowledge Gap,” Int. J. Res. Mark., vol. 33, no. 3, pp. 543–556, Sep. 2016, doi: 10.1016/j.ijresmar.2016.01.003.
[7] “特力集團—全方位貿易服務 - 光華管理個案收錄庫.” https://www.kmcc.org.tw/admin/case/upload/predis_pdf (accessed May 10, 2021).
[8] M. Bohanec, M. K. Borštnar, and M. Robnik-Šikonja, “Integration of Machine Learning Insights into Organizational Learning: A Case of B2B Sales Forecasting,” in Blurring the Boundaries Through Digital Innovation, Cham, 2016, pp. 71–85. doi: 10.1007/978-3-319-38974-5_7.
[9] D. F. Davis and J. T. Mentzer, “Organizational factors in sales forecasting management,” Int. J. Forecast., vol. 23, no. 3, pp. 475–495, Jul. 2007, doi: 10.1016/j.ijforecast.2007.02.005.
[10] M. Bohanec, M. Robnik-Šikonja, and M. Kljajić Borštnar, “Organizational Learning Supported by Machine Learning Models Coupled with General Explanation Methods: A Case of B2B Sales Forecasting,” Organizacija, vol. 50, no. 3, Art. no. 3, Jan. 2017, Accessed: May 03, 2021. [Online]. Available: http://organizacija.fov.uni-mb.si/index.php/organizacija/article/view/780
[11] X. Xu, L. Tang, and V. Rangan, “Hitting your number or not? A robust intelligent sales forecast system,” in 2017 IEEE International Conference on Big Data (Big Data), Dec. 2017, pp. 3613–3622. doi: 10.1109/BigData.2017.8258355.
[12] B. Suh, “Sales Teams Aren’t Great at Forecasting. Here’s How to Fix That.,” Harvard Business Review, Mar. 19, 2019. Accessed: May 04, 2021. [Online]. Available: https://hbr.org/2019/03/sales-teams-arent-great-at-forecasting-heres-how-to-fix-that
[13] F. Provost and T. Fawcett, “Data Science and its Relationship to Big Data and Data-Driven Decision Making,” Big Data, vol. 1, no. 1, pp. 51–59, Feb. 2013, doi: 10.1089/big.2013.1508.
[14] E. Brynjolfsson, L. M. Hitt, and H. H. Kim, “Strength in Numbers: How Does Data-Driven Decisionmaking Affect Firm Performance?,” Social Science Research Network, Rochester, NY, SSRN Scholarly Paper ID 1819486, Apr. 2011. doi: 10.2139/ssrn.1819486.
[15] A. McAfee and E. Brynjolfsson, “Big Data: The Management Revolution,” Harvard Business Review, Oct. 01, 2012. Accessed: May 04, 2021. [Online]. Available: https://hbr.org/2012/10/big-data-the-management-revolution
[16] E. W. T. Ngai, S. Peng, P. Alexander, and K. K. L. Moon, “Decision support and intelligent systems in the textile and apparel supply chain: An academic review of research articles,” Expert Syst. Appl., vol. 41, no. 1, pp. 81–91, Jan. 2014, doi: 10.1016/j.eswa.2013.07.013.
[17] A. L. D. Loureiro, V. L. Miguéis, and L. F. M. da Silva, “Exploring the use of deep neural networks for sales forecasting in fashion retail,” Decis. Support Syst., vol. 114, pp. 81–93, Oct. 2018, doi: 10.1016/j.dss.2018.08.010.
[18] “Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language - Jiangang Hao, Tin Kam Ho, 2019.” https://journals.sagepub.com/doi/abs/10.3102/1076998619832248 (accessed May 18, 2021).
[19] F. Halili and A. Rustemi, “Predictive Modeling : Data Mining Regression Technique Applied in a Prototype 1,” 2016. /paper/Predictive-Modeling-%3A-Data-Mining-Regression-in-a-1-Halili-Rustemi/a9ff9f770393b9b1b49aeed9ed3ffc6586ddcceb (accessed May 06, 2021).
[20] T.-M. Choi, C.-L. Hui, N. Liu, S.-F. Ng, and Y. Yu, “Fast fashion sales forecasting with limited data and time,” Decis. Support Syst., vol. 59, pp. 84–92, Mar. 2014, doi: 10.1016/j.dss.2013.10.008.
[21] A. L. D. Loureiro, V. L. Miguéis, and L. F. M. da Silva, “Exploring the use of deep neural networks for sales forecasting in fashion retail,” Decis. Support Syst., vol. 114, pp. 81–93, Oct. 2018, doi: 10.1016/j.dss.2018.08.010.
[22] T.-M. Choi, C.-L. Hui, N. Liu, S.-F. Ng, and Y. Yu, “Fast fashion sales forecasting with limited data and time,” Decis. Support Syst., vol. 59, pp. 84–92, Mar. 2014, doi: 10.1016/j.dss.2013.10.008.
[23] S. Thomassey and M. Happiette, “A neural clustering and classification system for sales forecasting of new apparel items,” Appl. Soft Comput., vol. 7, no. 4, pp. 1177–1187, Aug. 2007, doi: 10.1016/j.asoc.2006.01.005.
[24] Y. Yu, T.-M. Choi, and C.-L. Hui, “An intelligent fast sales forecasting model for fashion products,” Expert Syst. Appl., vol. 38, no. 6, pp. 7373–7379, Jun. 2011, doi: 10.1016/j.eswa.2010.12.089.
[25] A. Fallah Tehrani and D. Ahrens, “Enhanced predictive models for purchasing in the fashion field by using kernel machine regression equipped with ordinal logistic regression,” J. Retail. Consum. Serv., vol. 32, pp. 131–138, Sep. 2016, doi: 10.1016/j.jretconser.2016.05.008.
[26] A. Rezazadeh, “A Generalized Flow for B2B Sales Predictive Modeling: An Azure Machine Learning Approach,” ArXiv, 2020, doi: 10.3390/FORECAST2030015.
[27] “Approach and Solution to break in Top 20 of Big Mart Sales prediction,” Analytics Vidhya, Feb. 11, 2016. https://www.analyticsvidhya.com/blog/2016/02/bigmart-sales-solution-top-20/ (accessed Jun. 08, 2021).
[28] C. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance,” 2005, doi: 10.3354/CR030079.
[29] T. Chai and R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)?,” Geosci Model Dev, vol. 7, Jan. 2014, doi: 10.5194/gmdd-7-1525-2014.
[30] M. Kuhn and K. Johnson, “Linear Regression and Its Cousins,” in Applied Predictive Modeling, M. Kuhn and K. Johnson, Eds. New York, NY: Springer, 2013, pp. 101–139. doi: 10.1007/978-1-4614-6849-3_6.
[31] S. K. Prion and K. A. Haerling, “Making Sense of Methods and Measurements: Simple Linear Regression,” Clin. Simul. Nurs., vol. 48, pp. 94–95, Nov. 2020, doi: 10.1016/j.ecns.2020.07.004.
[32] M. Budka and B. Gabrys, “Ridge regression ensemble for toxicity prediction,” Procedia Comput. Sci., vol. 1, no. 1, pp. 193–201, May 2010, doi: 10.1016/j.procs.2010.04.022.
[33] R. A. Willoughby, “Solutions of Ill-Posed Problems (A. N. Tikhonov and V. Y. Arsenin),” SIAM Rev., vol. 21, no. 2, pp. 266–267, Apr. 1979, doi: 10.1137/1021044.
[34] “迴歸分析中共線性於Suppression與Collapsibility之效果探討__臺灣博碩士論文知識加值系統.” https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107NCCU5337016%22.&searchmode=basic (accessed May 19, 2021).
[35] “Introduction to Data Mining.” https://www-users.cs.umn.edu/~kumar001/dmbook/index.php (accessed May 19, 2021).
[36] L. Rokach and O. Maimon, “Decision Trees,” in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. Boston, MA: Springer US, 2005, pp. 165–192. doi: 10.1007/0-387-25465-X_9.
[37] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 10.1023/A:1010933404324.
[38] “Random forest regression prediction of solid particle Erosion in elbows - ScienceDirect.” https://www.sciencedirect.com/science/article/abs/pii/S0032591018305539 (accessed May 21, 2021).
[39] D. M. Hawkins, “The Problem of Overfitting,” J. Chem. Inf. Comput. Sci., vol. 44, no. 1, pp. 1–12, Jan. 2004, doi: 10.1021/ci0342472.
[40] C.-H. Wang and Y. Yun, “Demand planning and sales forecasting for motherboard manufacturers considering dynamic interactions of computer products,” Comput. Ind. Eng., vol. 149, p. 106788, Nov. 2020, doi: 10.1016/j.cie.2020.106788.
[41] “SVR mathematical model and methods for sale prediction - ScienceDirect.” https://www.sciencedirect.com/science/article/abs/pii/S1004413208600183 (accessed May 17, 2021).
[42] “電腦代理商銷售預測模式之建構-多種資料探勘技術之應用與比較__臺灣博碩士論文知識加值系統.” https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22098FJU00457056%22.&searchmode=basic (accessed May 17, 2021).
[43] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat. Comput., vol. 14, no. 3, pp. 199–222, Aug. 2004, doi: 10.1023/B:STCO.0000035301.49549.88.
[44] J. Cai, K. Xu, Y. Zhu, F. Hu, and L. Li, “Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest,” Appl. Energy, vol. 262, p. 114566, Mar. 2020, doi: 10.1016/j.apenergy.2020.114566.
[45] P. Prettenhofer and G. Louppe, “Gradient Boosted Regression Trees,” p. 39.
[46] S. Ben Taieb and R. J. Hyndman, “A gradient boosting approach to the Kaggle load forecasting competition,” Int. J. Forecast., vol. 30, no. 2, pp. 382–394, Apr. 2014, doi: 10.1016/j.ijforecast.2013.07.005.
[47] H. D. Nguyen, G. T. Truong, and M. Shin, “Development of extreme gradient boosting model for prediction of punching shear resistance of r/c interior slabs,” Eng. Struct., vol. 235, p. 112067, May 2021, doi: 10.1016/j.engstruct.2021.112067.
[48] G. Ke et al., “LightGBM: a highly efficient gradient boosting decision tree,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, Red Hook, NY, USA, Dec. 2017, pp. 3149–3157.
[49] J. Fan, X. Ma, L. Wu, F. Zhang, X. Yu, and W. Zeng, “Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data,” Agric. Water Manag., vol. 225, p. 105758, Nov. 2019, doi: 10.1016/j.agwat.2019.105758.
[50] J. Brownlee, “Hyperparameter Optimization With Random Search and Grid Search,” Machine Learning Mastery, Sep. 13, 2020. https://machinelearningmastery.com/hyperparameter-optimization-with-random-search-and-grid-search/ (accessed Mar. 16, 2021).
[51] “The-Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf.” Accessed: May 20, 2021. [Online]. Available: http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf
[52] D. Veit, “2 - Neural networks and their application to textile technology,” in Simulation in Textile Technology, D. Veit, Ed. Woodhead Publishing, 2012, pp. 9–71. doi: 10.1533/9780857097088.9.
[53] C. Bircanoğlu and N. Arıca, “A comparison of activation functions in artificial neural networks,” in 2018 26th Signal Processing and Communications Applications Conference (SIU), May 2018, pp. 1–4. doi: 10.1109/SIU.2018.8404724.
[54] Q. Huang, J. Mao, and Y. Liu, “An improved grid search algorithm of SVR parameters optimization,” in 2012 IEEE 14th International Conference on Communication Technology, Nov. 2012, pp. 1022–1026. doi: 10.1109/ICCT.2012.6511415. |