參考文獻 |
[1] Wu, X., Zhu, X., Wu, G.-Q., & Ding, W. (2014). Data mining with big data. IEEE
Transactions on Knowledge and Data Engineering, 26(1), 97–107.
https://doi.org/10.1109/TKDE.2013.109
[2] Zhang, C., Sun, J. H., & Tan, K. C. (2015). Deep Belief Networks Ensemble with
Multi-objective Optimization for Failure Diagnosis. 2015 IEEE International Conference on
Systems, Man, and Cybernetics, 32–37. https://doi.org/10.1109/SMC.2015.19
[3] Fawcett, T., & Provost, F. (1997). Adaptive Fraud Detection. Data Mining and
Knowledge Discovery, 1(3), 291–316. https://doi.org/10.1023/A:1009700419189
[4] Valdovinos, R. M., & Sanchez, J. S. (2005). Class-dependant resampling for medical
applications. Fourth International Conference on Machine Learning and Applications
(ICMLA’05), 6 pp.-. https://doi.org/10.1109/ICMLA.2005.15
[5] Ezawa, K. J., Singh, M., & Norton, S. W. (n.d.). Learning Goal Oriented Bayesian
Networks for Telecommunications Risk Management. 9.
[6] Sun, J., Rahman, M., Wong, Y. S., & Hong, G. S. (2004). Multiclassification of tool
wear with support vector machine by manufacturing loss consideration. International Journal
of Machine Tools and Manufacture, 44(11), 1179–1187.
https://doi.org/10.1016/j.ijmachtools.2004.04.003
[7] Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A
Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and HybridBased Approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(4), 463–484. https://doi.org/10.1109/TSMCC.2011.216128552
[8] Lin, Y., Lee, Y., & Wahba, G. (2002). Support Vector Machines for Classification in
Nonstandard Situations. Machine Learning, 46(1), 191–202.
https://doi.org/10.1023/A:1012406528296
[9] Liu, B., Ma, Y., & Wong, C. K. (2000). Improving an Association Rule Based
Classifier. In D. A. Zighed, J. Komorowski, & J. Żytkow (Eds.), Principles of Data Mining
and Knowledge Discovery (pp. 504–509). Springer. https://doi.org/10.1007/3-540-45372-
5_58
[10] Barandela, R., Sánchez, J. S., Garcı́a, V., & Rangel, E. (2003). Strategies for learning
in class imbalance problems. Pattern Recognition, 36, 849–851.
https://doi.org/10.1016/S0031-3203(02)00257-1
[11] Stefanowski, J., & Wilk, S. (2008). Selective Pre-processing of Imbalanced Data for
Improving Classification Performance. In I.-Y. Song, J. Eder, & T. M. Nguyen (Eds.), Data
Warehousing and Knowledge Discovery (pp. 283–292). Springer. https://doi.org/10.1007/978-
3-540-85836-2_27
[12] Fernández, A., García, S., del Jesus, M. J., & Herrera, F. (2008). A study of the
behaviour of linguistic fuzzy rule based classification systems in the framework of
imbalanced data-sets. Fuzzy Sets and Systems, 159(18), 2378–2398.
https://doi.org/10.1016/j.fss.2007.12.023
[13] Napierała, K., Stefanowski, J., & Wilk, S. (2010). Learning from Imbalanced Data in
Presence of Noisy and Borderline Examples. In M. Szczuka, M. Kryszkiewicz, S. Ramanna,
R. Jensen, & Q. Hu (Eds.), Rough Sets and Current Trends in Computing (pp. 158–167).
Springer. https://doi.org/10.1007/978-3-642-13529-3_18
[14] Chawla, N. V., Cieslak, D. A., Hall, L. O., & Joshi, A. (2008). Automatically
countering imbalance and its empirical relationship to cost. Data Mining and Knowledge
Discovery, 17(2), 225–252. https://doi.org/10.1007/s10618-008-0087-053
[15] Ling, C. X., Sheng, V. S., & Yang, Q. (2006). Test strategies for cost-sensitive
decision trees. IEEE Transactions on Knowledge and Data Engineering, 18(8), 1055–1067.
https://doi.org/10.1109/TKDE.2006.131
[16] Zhang, S., Liu, L., Zhu, X., & Zhang, C. (2008). A Strategy for Attributes Selection in
Cost-Sensitive Decision Trees Induction. 2008 IEEE 8th International Conference on
Computer and Information Technology Workshops, 8–13.
https://doi.org/10.1109/CIT.2008.Workshops.51
[17] Liu, Y.-Q., Wang, C., & Zhang, L. (2009). Decision Tree Based Predictive Models for
Breast Cancer Survivability on Imbalanced Data. 2009 3rd International Conference on
Bioinformatics and Biomedical Engineering, 1–4.
https://doi.org/10.1109/ICBBE.2009.5162571
[18] Tang, Y., Zhang, Y.-Q., Chawla, N. V., & Krasser, S. (2009). SVMs Modeling for
Highly Imbalanced Classification. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 39(1), 281–288. https://doi.org/10.1109/TSMCB.2008.2002909
[19] Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., &
Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics.
Journal of Big Data, 2(1), 1. https://doi.org/10.1186/s40537-014-0007-7
[20] Wang, S., & Yao, X. (2012). Multiclass Imbalance Problems: Analysis and Potential
Solutions. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(4),
1119–1130. https://doi.org/10.1109/TSMCB.2012.2187280
[21] Prati, R. C., Batista, G. E. A. P. A., & Monard, M. C. (2004). Class Imbalances versus
Class Overlapping: An Analysis of a Learning System Behavior. In R. Monroy, G. ArroyoFigueroa, L. E. Sucar, & H. Sossa (Eds.), MICAI 2004: Advances in Artificial Intelligence
(pp. 312–321). Springer. https://doi.org/10.1007/978-3-540-24694-7_32
[22] The class imbalance problem: A systematic study—IOS Press. (n.d.). Retrieved June
18, 2021, from https://content.iospress.com/articles/intelligent-data-analysis/ida0010354
[23] Jo, T., & Japkowicz, N. (2004). Class imbalances versus small disjuncts. ACM
SIGKDD Explorations Newsletter, 6(1), 40–49. https://doi.org/10.1145/1007730.1007737
[24] Kubat, M., & Matwin, S. (1997). Addressing the Curse of Imbalanced Training Sets:
One-Sided Selection. In Proceedings of the Fourteenth International Conference on Machine
Learning, 179–186.
[25] Mani, I., & Zhang, I. (2003, August). kNN approach to unbalanced data distributions:
a case study involving information extraction. In Proceedings of workshop on learning from
imbalanced datasets (Vol. 126). United States: ICML.
[26] Kotsiantis, S., & Pintelas, P. (2004). Mixture of expert agents for handling imbalanced
data sets. Annals of Mathematics, Computing & Teleinformatics, 1, 46–55.
[27] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:
Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16,
321–357. https://doi.org/10.1613/jair.953
[28] Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier
methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660–674.
https://doi.org/10.1109/21.97458
[29] C4.5: Programs for Machine Learning—J. Ross Quinlan—Google 圖書. (n.d.).
Retrieved June 18, 2021, from https://books.google.com.tw/books?hl=zhTW&lr=&id=b3ujBQAAQBAJ&oi=fnd&pg=PP1&dq=C45+Programs+for+Machine+Learni
ng&ots=sR3qRKFsE4&sig=xHZLhK0xBmyfxtlYEvwcsBJAltQ&redir_esc=y#v=onepage&q
=C45%20Programs%20for%20Machine%20Learning&f=false
[30] Hssina, B., Merbouha, A., Ezzikouri, H., & Erritali, M. (2014). A comparative study
of decision tree ID3 and C4.5. International Journal of Advanced Computer Science and
Applications, 4(2). https://doi.org/10.14569/SpecialIssue.2014.040203
[31] Mingers, J. (1989). An Empirical Comparison of Pruning Methods for Decision Tree
Induction. Machine Learning, 4(2), 227–243. https://doi.org/10.1023/A:102260410093355
[32] Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review, 33(1),
1–39. https://doi.org/10.1007/s10462-009-9124-7
[33] Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. Multiple Classifier
Systems, 1–15. https://doi.org/10.1007/3-540-45014-9_1
[34] Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
https://doi.org/10.1007/BF00058655
[35] Schapire, R. E. (n.d.). The strength of weak learnability. 31.
[36] Freund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm.
[37] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–
444. https://doi.org/10.1038/nature14539
[38] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with
deep convolutional neural networks. Communications of the ACM, 60(6), 84–90.
https://doi.org/10.1145/3065386
[39] Farabet, C., Couprie, C., Najman, L., & LeCun, Y. (2013). Learning Hierarchical
Features for Scene Labeling. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8), 1915–1929. https://doi.org/10.1109/TPAMI.2012.231
[40] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T. N., & Kingsbury, B. (2012). Deep Neural Networks
for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups.
IEEE Signal Processing Magazine, 29(6), 82–97. https://doi.org/10.1109/MSP.2012.2205597
[41] Mikolov, T., Deoras, A., Povey, D., Burget, L., & Černocký, J. (2011). Strategies for
training large scale neural network language models. 2011 IEEE Workshop on Automatic
Speech Recognition Understanding, 196–201. https://doi.org/10.1109/ASRU.2011.6163930
[42] Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent Trends in Deep
Learning Based Natural Language Processing [Review Article]. IEEE Computational
Intelligence Magazine, 13(3), 55–75. https://doi.org/10.1109/MCI.2018.284073856
[43] Leung, M. K. K., Xiong, H. Y., Lee, L. J., & Frey, B. J. (2014). Deep learning of the
tissue-regulated splicing code. Bioinformatics, 30(12), i121–i129.
https://doi.org/10.1093/bioinformatics/btu277
[44] The human splicing code reveals new insights into the genetic determinants of disease
| Science. (n.d.). Retrieved June 18, 2021, from
https://science.sciencemag.org/content/347/6218/1254806.abstract?casa_token=VL33a8_afwAAAAA:zY8EiV53672xkXEhe2olopddzcSc00qhsiOc4mtUes4lCcgck7-
CklSqvohI1DB85kgiBxv10jvZ17E
[45] Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer
perceptron)—A review of applications in the atmospheric sciences. Atmospheric
Environment, 32(14), 2627–2636. https://doi.org/10.1016/S1352-2310(97)00447-0
[46] Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A Fast Learning Algorithm for
Deep Belief Nets. Neural Computation, 18(7), 1527–1554.
https://doi.org/10.1162/neco.2006.18.7.1527
[47] Douzas, G., & Bacao, F. (2017). Self-Organizing Map Oversampling (SOMO) for
imbalanced data set learning. Expert Systems with Applications, 82, 40–52.
https://doi.org/10.1016/j.eswa.2017.03.073
[48] Rivera, W. A. (2017). Noise Reduction A Priori Synthetic Over-Sampling for class
imbalanced data sets. Information Sciences, 408, 146–161.
https://doi.org/10.1016/j.ins.2017.04.046
[49] Nanni, L., Fantozzi, C., & Lazzarini, N. (2015). Coupling different methods for
overcoming the class imbalance problem. Neurocomputing, 158, 48–61.
https://doi.org/10.1016/j.neucom.2015.01.068
[50] Lin, W.-C., Tsai, C.-F., Hu, Y.-H., & Jhang, J.-S. (2017). Clustering-based
undersampling in class-imbalanced data. Information Sciences, 409–410, 17–26.
https://doi.org/10.1016/j.ins.2017.05.00857
[51] Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class
imbalance problem in convolutional neural networks. Neural Networks, 106, 249–259.
https://doi.org/10.1016/j.neunet.2018.07.011
[52] Hensman, P., & Masko, D. (n.d.). The Impact of Imbalanced Training Data for
Convolutional Neural Networks. 28.
[53] Zhang, C., Tan, K. C., & Ren, R. (2016). Training cost-sensitive Deep Belief
Networks on imbalance data problems. 2016 International Joint Conference on Neural
Networks (IJCNN), 4362–4367. https://doi.org/10.1109/IJCNN.2016.7727769
[54] Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., & Kennedy, P. J. (2016). Training deep
neural networks on imbalanced data sets. 2016 International Joint Conference on Neural
Networks (IJCNN), 4368–4374. https://doi.org/10.1109/IJCNN.2016.7727770
[55] An alternative SMOTE oversampling strategy for high-dimensional datasets—
ScienceDirect. (n.d.). Retrieved July 13, 2021, from
https://www.sciencedirect.com/science/article/abs/pii/S1568494618307130
[56] Ren, R., Yang, Y., & Sun, L. (2020). Oversampling technique based on fuzzy
representativeness difference for classifying imbalanced data. Applied Intelligence, 50(8),
2465–2487. https://doi.org/10.1007/s10489-020-01644-0
[57] Guan, H., Zhang, Y., Xian, M., Cheng, H. D., & Tang, X. (2021). SMOTE-WENN:
Solving class imbalance and small sample problems by oversampling and distance scaling.
Applied Intelligence, 51(3), 1394–1409. https://doi.org/10.1007/s10489-020-01852-8
[58] Zhang, R., Zhang, Z., & Wang, D. (2021). RFCL: A new under-sampling method of
reducing the degree of imbalance and overlap. Pattern Analysis and Applications, 24(2), 641–
654. https://doi.org/10.1007/s10044-020-00929-x
[59] Dara, S., & Tumma, P. (2018). Feature Extraction By Using Deep Learning: A
Survey. 2018 Second International Conference on Electronics, Communication and
Aerospace Technology (ICECA), 1795–1801. https://doi.org/10.1109/ICECA.2018.847491258
[60] Xiao, Y., Xing, C., Zhang, T., & Zhao, Z. (2019). An Intrusion Detection Model
Based on Feature Reduction and Convolutional Neural Networks. IEEE Access, 7, 42210–
42219. https://doi.org/10.1109/ACCESS.2019.2904620 |