參考文獻 |
[1] A. Mnih and R. R. Salakhutdinov, ``Probabilistic matrix factorization,′′ in Proc. Adv. Neural Inf. Process. Syst., 2008, pp. 1257_1264.
[2] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, ``Application of dimensionality reduction in recommender system A case study,′′ Dept. Comput. Sci. Eng. Univ. Minnesota, Minneapolis, MN, USA, Tech. Rep. TR-00-043, 2000.
[3] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285--295, 2001.
[4] Carl Yang, Lanxiao Bai, Chao Zhang, .an Yuan, and Jiawei Han. 2017. Bridging Collaborative Filtering and Semi-Supervised Learning:A Neural Approach for POI Recommendation. In SIGKDD.
[5] Cen Chen, Peilin Zhao, Longfei Li, Jun Zhou, Xiaolong Li, and Minghui Qiu. 2017. Locally Connected Deep Learning Framework for Industrial-scale Recommender Systems. In WWW.
[6] Chang Zhou, Jinze Bai, Junshuai Song, Xiaofei Liu, Zhengchao Zhao, Xiusi Chen, and Jun Gao. 2017. ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation. arXiv preprint arXiv:1711.06632 (2017).
[7] Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X., and Shah, H. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016.
[8] C. Xia, X. Jiang, Sen Liu, Zhaobo Luo and Zhang Yu, "Dynamic item-based recommendation algorithm with time decay," 2010 Sixth International Conference on Natural Computation, 2010, pp. 242-247, doi: 10.1109/ICNC.2010.5582899.
[9] C. Yang, H. Li, “Personalize Context and Item Class Based Resource Recommendation,” Computer Science, 2011, 38(10A), pp. 175-177.
[10] D. Lee and H. Seung, “Algorithms for Non-negative Matrix Factorization,“ Proceedings of the 13th Advances in Neural Information Processing (NIPS 2000), pp. 535–541. 2000.
[11] D. Liang, J. Altosaar, L. Charlin and D. Blei, “Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence,” Proceedings of the 10th ACM Conference on Recommender Systems (RecSys), pp. 59-66, 2016.
[12] Haochao Ying, Fuzhen Zhuang, Fuzheng Zhang, Yanchi Liu, Guandong Xu, Xing Xie, Hui Xiong, and Jian Wu. 2018. Sequential Recommender System based on Hierarchical Attention Networks. In IJCAI.
[13] Hugo Larochelle ,Iain Murray, “The Neural Autoregressive Distribution Estimator” Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, PMLR 15:29- 37, 2011
[14] Jianxun Lian, Fuzheng Zhang, Xing Xie, and Guangzhong Sun. 2017. CCCFNet: A Content-Boosted Collaborative Filtering Neural Network for Cross Domain Recommender Systems. In Proceedings of the 26th International Conference on World Wide Web Companion.
[15] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. 2017. Attentive Collaborative Filtering: Multimedia Recommendation with Item- and Component-Level Attention. (2017).
[16] J. Liu, Y. Jiang, Z. Li, X. Zhang, and H. Lu, ``Domain-sensitive recommendation with user-item subgroup analysis,′′ IEEE Trans. Knowl. Data Eng., vol. 28, no. 4, pp. 939_950, Apr. 2016.
[17] J. S. Breese, D. Heckerman, and C. Kadie, ``Empirical analysis of predictive algorithms for collaborative filtering,′′ in Proc. 14th Conf. Uncertainty Artif. Intell., 1998, pp. 43_52.
[18] Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis(Vol. 7). Cambridge university press.
[19] K. Miyahara and M. J. Pazzani, ``Collaborative filtering with the simple Bayesian classifier,′′ in Proc. Topics Artif. Intell. (PRICAI), 2000,pp. 679_689.
[20] K. Yu, S. Zhu, J. Lafferty, and Y. Gong, ``Fast nonparametric matrix factorization for large-scale collaborative filtering,′′ in Proc. 32nd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 2009, pp. 211_218.
[21] Lahmiri, Salim. (2012). Linear and nonlinear dynamic systems in financial time series prediction. Management Science Letters. 2. 2551-2556. 10.5267/j.msl.2012.07.009.
[22] Larochelle, Hugo and Murray, Iain. The neural autoregressive distribution estimator. In International Conference on Artificial Intelligence and Statistics, pp. 29–37, 2011.
[23] Mills, Terence & Markellos, Raphael. (2008). Nonlinear Times Series in Financial Economics.
[24] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for youtube recommendations. In Recsys. 191–198.
[25] P. Brusilovsky, A. Kobsa, and W. Nejdl (Eds.): The Adaptive Web, LNCS 4321, pp. 291 – 324, 2007. Collaborative Filtering Recommender Systems.
[26] Shuai Zhang, Yi Tay, Lina Yao, and Aixin Sun. 2018. Next Item Recommendation with Self- Attention. arXiv preprint arXiv:1808.06414 (2018).
[27] Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. 2017. Embedding-based News Recommendation for Millions of Users. In SIGKDD
[28] S. Kabbur and G. Karypis, "NLMF: NonLinear Matrix Factorization Methods for Top-N Recommender Systems," 2014 IEEE International Conference on Data Mining Workshop, 2014, pp. 167-174, doi: 10.1109/ICDMW.2014.108
[29] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt Thieme. BPR: bayesian personalized ranking from implicit feedback. In UAI, pages 452–461. IEEE, 2009.
[30] S. Vucetic and Z. Obradovic, ``Collaborative filtering using a regression-based approach,′′ Knowl. Inf. Syst., vol. 7, no. 1, pp. 1_22, 2005.
[31] S Yang, Long, Bo and Smola, Alexander J. and H Zha and Z Zheng, “Collaborative Competitive Filtering: Learning Recommender Using Context of User Choice,” Association for Computing Machinery,2011
[32] T. Hofmann and J. Puzicha, ``Latent class models for collaborative filtering,′′ in Proc. IJCAI, vol. 99, no. 1999, pp. 1_6 1999.
[33] V. Kumar, A. K. Pujari, S. K. Sahu, V. R. Kagita, and V. Padmanabhan, ``Proximal maximum margin matrix factorization for collaborative filtering,′′ Pattern Recognit. Lett., vol. 86, pp. 62_67, Jan. 2017.
[34] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural collaborative filtering. In WWW. 173–182.
[35] Yin Zheng, Bangsheng Tang, Wenkui Ding, Hanning Zhou, “A Neural Autoregressive Approach to Collaborative Filtering,” Proceedings of The 33rd International Conference on Machine Learning, PMLR 48:764-773, 2016.
[36] Y. Koren, R. Bell, and C. Volinsky, ``Matrix factorization techniques for recommender systems,′′ Computer, vol. 42, no. 8, pp. 30_37, 2009.
[37] Z. Zhao and M. Shang. User-based collaborative-filtering recommendation nalgorithms on hadoop. In KDD, pages 478–481. ACM, 2010. |