博碩士論文 108423035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.145.40.234
姓名 朱怡寧(Yi-Ning Chu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱
(An Attention-Based Collaborative Filtering for Sequential Recommendation)
相關論文
★ 台灣50走勢分析:以多重長短期記憶模型架構為基礎之預測★ 以多重遞迴歸神經網路模型為基礎之黃金價格預測分析
★ 增量學習用於工業4.0瑕疵檢測★ 遞回歸神經網路於電腦零組件銷售價格預測之研究
★ 長短期記憶神經網路於釣魚網站預測之研究★ 基於深度學習辨識跳頻信號之研究
★ Opinion Leader Discovery in Dynamic Social Networks★ 深度學習模型於工業4.0之機台虛擬量測應用
★ A Novel NMF-Based Movie Recommendation with Time Decay★ 以類別為基礎sequence-to-sequence模型之POI旅遊行程推薦
★ A DQN-Based Reinforcement Learning Model for Neural Network Architecture Search★ Neural Network Architecture Optimization Based on Virtual Reward Reinforcement Learning
★ 生成式對抗網路架構搜尋★ 以漸進式基因演算法實現神經網路架構搜尋最佳化
★ Enhanced Model Agnostic Meta Learning with Meta Gradient Memory★ 遞迴類神經網路結合先期工業廢水指標之股價預測研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-20以後開放)
摘要(中) 隨著網路的普及,我們可以輕易的在網路上找尋資料,例如,想看的影集、書籍,等等,然而資訊爆炸使得找尋想要的資料成為一件困難的事情。例如截然不同的兩位使用者,搜尋相同的關鍵字會得到相同的結果,因此如何根據使用者的興趣以及過去的紀錄進行推薦,成了一件重要的事情。協同過濾是一個成熟且廣泛應用於推薦系統中的技術,然而協同過濾同時也存在一些致命的問題,例如:冷啟動。本篇論文主要透過將基於存量(memory-based)的協同過濾中的基於使用者(user-based)協同過濾與基於專案(item-based)的協同過濾以注意力機制結合,讓我們的ACCF模型可以同時考慮兩者,使得在做推薦預測時,能有更多的資訊可以參考,並且在做推薦時透過注意力機制自動調整兩個模型所占的比重,藉此降低冷啟動帶來的負面影響。此外,考慮到傳統協同過濾無法處理使用者興趣演變的問題,因此,本篇論文的模型ACCF將使用者興趣演變納入考量。實驗結果顯示,ACCF的推薦性能優於其他的推薦演算法。此外,我們也在幾個真實的資料集上進行實驗,證明ACCF比起其他以協同過濾為基礎的推薦系統,擁有較佳的表現。
摘要(英) With the popularization of the Internet, we can easily find information on the Internet, such as movies, books and so on. However, the information explosion makes it difficult to find the information we want, accurately. For example, when two different users search for the same keywords, they will get the same results. Therefore, how to make recommendations based on users′ interests and users’ past behaviors becomes an important thing. Collaborative filtering (CF) is a mature and widely used technology in recommendation system. However, collaborative filtering also has some fatal problems, such as cold start. In this paper, we combine User-based CF with item-based CF with attention mechanism, so that our ACCF model can consider both of them simultaneously, so that when making recommendation prediction, more information can be referred to. Besides, the attention mechanism can automatically adjust the weight of the two models, thus reducing the negative impact of cold start. In addition, considering that traditional collaborative filtering cannot deal with the evolution of users′ interests, the model ACCF in this paper takes the evolution of users′ interests into consideration. The experimental results show that ACCF′s recommendation performance is better than other recommendation algorithms. In addition, we have also conducted experiments on several real datasets, proving that ACCF performs better than other collaborative filtering-based recommendation systems.
關鍵字(中) ★ 協同過濾
★ 注意力機制
★ 推薦系統
★ 深度學習
關鍵字(英) ★ Collaborative filtering
★ Attention mechanism
★ Recommendation system
★ Deep learning
論文目次 中文摘要…………………….….….……...………………….....……….ii
Abstract………………………………………………………………….iii
致謝………………………………………………………………...……iv
Table of contents………………………………………….…………..….v
List of Figures……………………………………………………………vi
List of Tables……………………………………………………………vii
1. Introduction…………………………………………………………...1
2. Related Work…………………………………………………….……3
2.1 Collaborative Filtering on Recommendation……………………3
2.2 Neural Network on Recommendation…………………………...5
2.3 Time Influence on recommendation……………………………..6
3. Preliminary……………………………………………………………7
3.1 Self-Attention……………………………………………………..7
4. Proposed Method……………………………………………………..9
4.1 Similarity level model…………………………………………...10
4.2 Prediction level model…………………………………………..12
4.3 Fusion level model………………………………..……………..13
5. Experiment…………………………………………………………..14
5.1 Analysis on Accuracy performance……………………………..15
5.2 Discussion on Similarity level…………………………………..16
5.3 Discussion on Prediction level…………………………………..17
5.4 Discussion on Parameter……………………………………...…20
5.5 Discussion on Fusion level……………………..………………..22
Conclusion………………………………………………………………24
Reference………………………………………………………………..25
參考文獻 [1] A. Mnih and R. R. Salakhutdinov, ``Probabilistic matrix factorization,′′ in Proc. Adv. Neural Inf. Process. Syst., 2008, pp. 1257_1264.
[2] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, ``Application of dimensionality reduction in recommender system A case study,′′ Dept. Comput. Sci. Eng. Univ. Minnesota, Minneapolis, MN, USA, Tech. Rep. TR-00-043, 2000.
[3] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285--295, 2001.
[4] Carl Yang, Lanxiao Bai, Chao Zhang, .an Yuan, and Jiawei Han. 2017. Bridging Collaborative Filtering and Semi-Supervised Learning:A Neural Approach for POI Recommendation. In SIGKDD.
[5] Cen Chen, Peilin Zhao, Longfei Li, Jun Zhou, Xiaolong Li, and Minghui Qiu. 2017. Locally Connected Deep Learning Framework for Industrial-scale Recommender Systems. In WWW.
[6] Chang Zhou, Jinze Bai, Junshuai Song, Xiaofei Liu, Zhengchao Zhao, Xiusi Chen, and Jun Gao. 2017. ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation. arXiv preprint arXiv:1711.06632 (2017).
[7] Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X., and Shah, H. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016.
[8] C. Xia, X. Jiang, Sen Liu, Zhaobo Luo and Zhang Yu, "Dynamic item-based recommendation algorithm with time decay," 2010 Sixth International Conference on Natural Computation, 2010, pp. 242-247, doi: 10.1109/ICNC.2010.5582899.
[9] C. Yang, H. Li, “Personalize Context and Item Class Based Resource Recommendation,” Computer Science, 2011, 38(10A), pp. 175-177.
[10] D. Lee and H. Seung, “Algorithms for Non-negative Matrix Factorization,“ Proceedings of the 13th Advances in Neural Information Processing (NIPS 2000), pp. 535–541. 2000.
[11] D. Liang, J. Altosaar, L. Charlin and D. Blei, “Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence,” Proceedings of the 10th ACM Conference on Recommender Systems (RecSys), pp. 59-66, 2016.
[12] Haochao Ying, Fuzhen Zhuang, Fuzheng Zhang, Yanchi Liu, Guandong Xu, Xing Xie, Hui Xiong, and Jian Wu. 2018. Sequential Recommender System based on Hierarchical Attention Networks. In IJCAI.
[13] Hugo Larochelle ,Iain Murray, “The Neural Autoregressive Distribution Estimator” Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, PMLR 15:29- 37, 2011
[14] Jianxun Lian, Fuzheng Zhang, Xing Xie, and Guangzhong Sun. 2017. CCCFNet: A Content-Boosted Collaborative Filtering Neural Network for Cross Domain Recommender Systems. In Proceedings of the 26th International Conference on World Wide Web Companion.
[15] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. 2017. Attentive Collaborative Filtering: Multimedia Recommendation with Item- and Component-Level Attention. (2017).
[16] J. Liu, Y. Jiang, Z. Li, X. Zhang, and H. Lu, ``Domain-sensitive recommendation with user-item subgroup analysis,′′ IEEE Trans. Knowl. Data Eng., vol. 28, no. 4, pp. 939_950, Apr. 2016.
[17] J. S. Breese, D. Heckerman, and C. Kadie, ``Empirical analysis of predictive algorithms for collaborative filtering,′′ in Proc. 14th Conf. Uncertainty Artif. Intell., 1998, pp. 43_52.
[18] Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis(Vol. 7). Cambridge university press.
[19] K. Miyahara and M. J. Pazzani, ``Collaborative filtering with the simple Bayesian classifier,′′ in Proc. Topics Artif. Intell. (PRICAI), 2000,pp. 679_689.
[20] K. Yu, S. Zhu, J. Lafferty, and Y. Gong, ``Fast nonparametric matrix factorization for large-scale collaborative filtering,′′ in Proc. 32nd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 2009, pp. 211_218.
[21] Lahmiri, Salim. (2012). Linear and nonlinear dynamic systems in financial time series prediction. Management Science Letters. 2. 2551-2556. 10.5267/j.msl.2012.07.009.
[22] Larochelle, Hugo and Murray, Iain. The neural autoregressive distribution estimator. In International Conference on Artificial Intelligence and Statistics, pp. 29–37, 2011.
[23] Mills, Terence & Markellos, Raphael. (2008). Nonlinear Times Series in Financial Economics.
[24] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for youtube recommendations. In Recsys. 191–198.
[25] P. Brusilovsky, A. Kobsa, and W. Nejdl (Eds.): The Adaptive Web, LNCS 4321, pp. 291 – 324, 2007. Collaborative Filtering Recommender Systems.
[26] Shuai Zhang, Yi Tay, Lina Yao, and Aixin Sun. 2018. Next Item Recommendation with Self- Attention. arXiv preprint arXiv:1808.06414 (2018).
[27] Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. 2017. Embedding-based News Recommendation for Millions of Users. In SIGKDD
[28] S. Kabbur and G. Karypis, "NLMF: NonLinear Matrix Factorization Methods for Top-N Recommender Systems," 2014 IEEE International Conference on Data Mining Workshop, 2014, pp. 167-174, doi: 10.1109/ICDMW.2014.108
[29] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt Thieme. BPR: bayesian personalized ranking from implicit feedback. In UAI, pages 452–461. IEEE, 2009.
[30] S. Vucetic and Z. Obradovic, ``Collaborative filtering using a regression-based approach,′′ Knowl. Inf. Syst., vol. 7, no. 1, pp. 1_22, 2005.
[31] S Yang, Long, Bo and Smola, Alexander J. and H Zha and Z Zheng, “Collaborative Competitive Filtering: Learning Recommender Using Context of User Choice,” Association for Computing Machinery,2011
[32] T. Hofmann and J. Puzicha, ``Latent class models for collaborative filtering,′′ in Proc. IJCAI, vol. 99, no. 1999, pp. 1_6 1999.
[33] V. Kumar, A. K. Pujari, S. K. Sahu, V. R. Kagita, and V. Padmanabhan, ``Proximal maximum margin matrix factorization for collaborative filtering,′′ Pattern Recognit. Lett., vol. 86, pp. 62_67, Jan. 2017.
[34] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural collaborative filtering. In WWW. 173–182.
[35] Yin Zheng, Bangsheng Tang, Wenkui Ding, Hanning Zhou, “A Neural Autoregressive Approach to Collaborative Filtering,” Proceedings of The 33rd International Conference on Machine Learning, PMLR 48:764-773, 2016.
[36] Y. Koren, R. Bell, and C. Volinsky, ``Matrix factorization techniques for recommender systems,′′ Computer, vol. 42, no. 8, pp. 30_37, 2009.
[37] Z. Zhao and M. Shang. User-based collaborative-filtering recommendation nalgorithms on hadoop. In KDD, pages 478–481. ACM, 2010.
指導教授 陳以錚(Yi-Cheng Chen) 審核日期 2021-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明