博碩士論文 108453004 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.117.148.79
姓名 嚴心妤(Hsin-Yu Yen)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 以類神經網路為基礎預測航空貨運準時度之研究
相關論文
★ 台灣50走勢分析:以多重長短期記憶模型架構為基礎之預測★ 以多重遞迴歸神經網路模型為基礎之黃金價格預測分析
★ 增量學習用於工業4.0瑕疵檢測★ 遞回歸神經網路於電腦零組件銷售價格預測之研究
★ 長短期記憶神經網路於釣魚網站預測之研究★ 基於深度學習辨識跳頻信號之研究
★ Opinion Leader Discovery in Dynamic Social Networks★ 深度學習模型於工業4.0之機台虛擬量測應用
★ A Novel NMF-Based Movie Recommendation with Time Decay★ 以類別為基礎sequence-to-sequence模型之POI旅遊行程推薦
★ A DQN-Based Reinforcement Learning Model for Neural Network Architecture Search★ Neural Network Architecture Optimization Based on Virtual Reward Reinforcement Learning
★ 生成式對抗網路架構搜尋★ 以漸進式基因演算法實現神經網路架構搜尋最佳化
★ Enhanced Model Agnostic Meta Learning with Meta Gradient Memory★ 遞迴類神經網路結合先期工業廢水指標之股價預測研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 在航空運輸業中,速度就是成本。準時交貨更是航空貨運營運被視為服務優勢的重要關鍵要素,貨物若無法在承諾的交貨時間內抵達,可能會衍生延誤成本。本研究旨在提供航空貨運延誤實時預測,資料來源為國內指標性航空貨運承載資料與全球起降航點歷史天氣資料,以貨物相關特徵,包含件數、體積、重量、特殊處理註記等,結合班機起飛、降落航點天氣狀況,藉由探究可能導致無法準時交貨的因素,進而建立一個結合貨物與天氣特徵之全新貨運準時度預測模型。從實驗發現,類神經網路因具有自我調適與處理非線性問題的特性,對於異質性大且無一定規則可循的航空貨運,預測準確率確實優於傳統分類演算法。本研究期望藉由貨運準時度預測,預告貨物可能面臨延遲抵達的情況,進而調整更有利的運送決策,將有助於提高航空運輸管理質量,也加深航空運輸業者與客戶之間的黏著度,經由長期信任而建立客戶滿意度,為航空運輸業者帶來競爭優勢。
摘要(英) In the air transportation industry, speed is cost. In air cargo operations, on-time delivery is regarded as an important key element of service advantages. If the delivery fails to arrive within the promised delivery time, delay costs may be incurred.
The purpose of this research is to establish a predictive delivery model by exploring the factors that may lead to on-time delivery by exploring the relevant characteristics of the cargo and the weather conditions at the flight′s take-off/landing. The data sources are the domestic index air cargo carrying database and the historical weather data of global take-offs and landings. After selecting data mining features, a neural network prediction model is built through deep learning of large amounts of data. From experiments, it is found that, due to the characteristics of self-adjustment, the prediction accuracy of neural networks is indeed better than traditional classification algorithms for air cargo with large heterogeneity and no certain rules to follow. The punctuality predicted by the models is used to inform shippers in advance they may face the problem of delayed arrival of goods and then adjusting more favorable shipping decisions
With the function of early warning, the closeness between airlines and customers can be improved. Moreover, airlines can gain a competitive advantage through the long-trusted customer relationships.
關鍵字(中) ★ 航空貨運
★ 準時度預測
★ 類神經網路
關鍵字(英) ★ Air Cargo
★ On-time delivery forecast
★ Neural Network
論文目次 第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 2
1.4 研究貢獻 3
1.5 論文架構 3
第二章 文獻探討 5
2.1 航空貨運相關研究與應用 5
2.2 航空貨運準時交付相關研究與應用 6
2.3 人工神經網路相關研究與應用 6
第三章 研究方法 9
3.1 資料蒐集 9
3.1.1 航空貨運資料 10
3.1.2 全球機場數據庫資料 10
3.1.3 班機起迄場站氣象資料 10
3.2 資料前處理 14
3.3 類神經網路 15
3.4 模型建立 17
3.5 模型評估 18
第四章 實驗結果與分析 20
4.1 資料集 20
4.1.1 航空貨運資料集 20
4.1.2 全球機場天氣資料集 21
4.2 實驗設計 21
4.2.1 資料前處理 22
4.2.2 定義模型 23
4.2.3 編譯模型 25
4.2.4 訓練模型 25
4.2.5 評估模型 26
4.3 實驗超參數討論 27
4.3.1 隱藏層層數 28
4.3.2 隱藏層神經元數量 28
第五章 結論 30
5.1 研究結論 30
5.2 研究限制 30
5.3 未來研究方向與建議 31
參考文獻 32
參考文獻 Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938
Amaruchkul, K., Cooper, W. L., & Gupta, D. (2007). Single-Leg Air-Cargo Revenue Management. Transportation Science, 41(4), 457–469. https://doi.org/10.1287/trsc.1060.0177
Azadian, F., Murat, A. E., & Chinnam, R. B. (2012). Dynamic routing of time-sensitive air cargo using real-time information. Transportation Research Part E: Logistics and Transportation Review, 48(1), 355–372. https://doi.org/10.1016/j.tre.2011.07.004
Baxter, G., & Srisaeng, P. (2018). THE USE OF AN ARTIFICIAL NEURAL NETWORK TO PREDICT AUSTRALIA’S EXPORT AIR CARGO DEMAND. INTERNATIONAL JOURNAL FOR TRAFFIC AND TRANSPORT ENGINEERING, 8(1), 15–30. https://doi.org/10.7708/ijtte.2018.8(1).02
Boeing: Commercial Market Outlook. (2020, January). http://www.boeing.com/commercial/market/commercial-market-outlook/index.page
Cao, J., & Kanafani, A. (1997). Real‐time decision support for integration of airline flight cancellations and delays part I: Mathematical formulation. Transportation Planning and Technology, 20(3), 183–199. https://doi.org/10.1080/03081069708717588
Chen, S.-C., Kuo, S.-Y., Chang, K.-W., & Wang, Y.-T. (2012). Improving the forecasting accuracy of air passenger and air cargo demand: The application of back-propagation neural networks. Transportation Planning and Technology, 35(3), 373–392. https://doi.org/10.1080/03081060.2012.673272
Derigs, U., & Friederichs, S. (2013). Air cargo scheduling: Integrated models and solution procedures. OR Spectrum, 35(2), 325–362. https://doi.org/10.1007/s00291-012-0299-y
Feng, B., Li, Y., & Shen, Z.-J. M. (2015). Air cargo operations: Literature review and comparison with practices. Transportation Research Part C: Emerging Technologies, 56, 263–280. https://doi.org/10.1016/j.trc.2015.03.028
Freisleben, B., & Gleichmann, G. (1993). Controlling airline seat allocations with neural networks. [1993] Proceedings of the Twenty-Sixth Hawaii International Conference on System Sciences, iv, 635–642. https://doi.org/10.1109/HICSS.1993.284243
Huang, S.-H. S., & Hsu, W.-K. K. (2016). Evaluating the service requirements of combination air cargo carriers. Asia Pacific Management Review, 21(1), 1–8. https://doi.org/10.1016/j.apmrv.2015.05.001
Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial. Computer, 29(3), 31–44. https://doi.org/10.1109/2.485891
Kalogirou, S. A. (2014). Designing and Modeling Solar Energy Systems. In Solar Energy Engineering (pp. 583–699). Elsevier. https://doi.org/10.1016/B978-0-12-397270-5.00011-X
Kasilingam, R. G. (1997). An economic model for air cargo overbooking under stochastic capacity. Computers & Industrial Engineering, 32(1), 221–226. https://doi.org/10.1016/S0360-8352(96)00211-2
Kupfer, F., Meersman, H., Onghena, E., & Van de Voorde, E. (2017). The underlying drivers and future development of air cargo. Journal of Air Transport Management, 61, 6–14. https://doi.org/10.1016/j.jairtraman.2016.07.002
Lange, A. (2019). Does cargo matter? The impact of air cargo operations on departure on-time performance for combination carriers. Transportation Research Part A: Policy and Practice, 119, 214–223. https://doi.org/10.1016/j.tra.2018.10.005
Law, R., & Au, N. (1999). A neural network model to forecast Japanese demand for travel to Hong Kong. Tourism Management, 9.
Liu, J., Ding, L., Guan, X., Gui, J., & Xu, J. (2020). Comparative analysis of forecasting for air cargo volume: Statistical techniques vs. machine learning. Journal of Data, Information and Management, 2(4), 243–255. https://doi.org/10.1007/s42488-020-00031-1
Liu, Y., Yin, M., & Hansen, M. (2019). Economic costs of air cargo flight delays related to late package deliveries. Transportation Research Part E: Logistics and Transportation Review, 125, 388–401. https://doi.org/10.1016/j.tre.2019.03.017
Mongeau, M., & Bes, C. (2003). Optimization of aircraft container loading. IEEE Transactions on Aerospace and Electronic Systems, 39(1), 140–150. https://doi.org/10.1109/TAES.2003.1188899
Niu, B., Dai, Z., & Zhuo, X. (2019). Co-opetition effect of promised-delivery-time sensitive demand on air cargo carriers’ big data investment and demand signal sharing decisions. Transportation Research Part E: Logistics and Transportation Review, 123, 29–44. https://doi.org/10.1016/j.tre.2019.01.011
Odom, M. D., & Sharda, R. (1990). A neural network model for bankruptcy prediction. 1990 IJCNN International Joint Conference on Neural Networks, 163–168 vol.2. https://doi.org/10.1109/IJCNN.1990.137710
Rowley, H. A., Baluja, S., & Kanade, T. (1998). Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1), 23–38. https://doi.org/10.1109/34.655647
Totamane, R., Dasgupta, A., & Rao, S. (2014). Air Cargo Demand Modeling and Prediction. IEEE Systems Journal, 8(1), 52–62. https://doi.org/10.1109/JSYST.2012.2218511
Wang, Y.-J., & Kao, C.-S. (2008). An application of a fuzzy knowledge system for air cargo overbooking under uncertain capacity. Computers & Mathematics with Applications, 56(10), 2666–2675. https://doi.org/10.1016/j.camwa.2008.02.049
Wong, W. H., Zhang, A., Van Hui, Y., & Leung, L. C. (2009). Optimal Baggage-Limit Policy: Airline Passenger and Cargo Allocation. Transportation Science, 43(3), 355–369. https://doi.org/10.1287/trsc.1090.0266
Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with artificial neural networks: International Journal of Forecasting, 14(1), 35–62. https://doi.org/10.1016/S0169-2070(97)00044-7
指導教授 陳以錚 審核日期 2021-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明