參考文獻 |
中文文獻
108 年度國內上市後藥品不良反應通報案例分析 (. (n.d.).
英文文獻
1972WHO.pdf. (n.d.).
Ahmad, S. R. (2003). Adverse drug event monitoring at the food and drug administration. Journal of General Internal Medicine, 18(1), 57–60. https://doi.org/10.1046/j.1525-1497.2003.20130.x
Akhtyamova, L., Cardiff, J., &Alexandrov, M. (2017). Adverse drug extraction in twitter data using convolutional neural network. Proceedings - International Workshop on Database and Expert Systems Applications, DEXA, 2017-Augus, 88–92. https://doi.org/10.1109/DEXA.2017.34
Alex Graves, A. M. and G. H. (2013). Speech Recognition with Deep Recurrent Neural Networks , Department of Computer Science, University of Toronto. Department of Computer Science, University of Toronto, 3(3), 45–49. Retrieved from https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=6638947&ref=aHR0cHM6Ly9pZWVleHBsb3JlLmllZWUub3JnL2Fic3RyYWN0L2RvY3VtZW50LzY2Mzg5NDc/Y2FzYV90b2tlbj1OQUo1VFJxWk5JRUFBQUFBOmtPZmdDbS00NGhqaGI2N3dMd2JrU3lSaEdJREhBWnpMSkxoT201Um5YMXR0S0poUDAtM2hkbT
Alsentzer, E., Murphy, J., Boag, W., Weng, W.-H., Jindi, D., Naumann, T., &McDermott, M. (2019). Publicly Available Clinical. 72–78. https://doi.org/10.18653/v1/w19-1909
Alsentzer, E., Murphy, J. R., Boag, W., Weng, W.-H., Jin, D., Naumann, T., &McDermott, M. B. A. (2019). Publicly Available Clinical BERT Embeddings. Retrieved from http://arxiv.org/abs/1904.03323
Breden, A., &Moore, L. (2020). Detecting Adverse Drug Reactions from Twitter through Domain-Specific Preprocessing and BERT Ensembling. ArXiv, 2015.
Chandak, P., &Tatonetti, N. P. (2020). Using Machine Learning to Identify Adverse Drug Effects Posing Increased Risk to Women. Patterns, 1(7), 100108. https://doi.org/10.1016/j.patter.2020.100108
Cocos, A., Fiks, A. G., &Masino, A. J. (2017). Deep learning for pharmacovigilance: Recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. Journal of the American Medical Informatics Association, 24(4), 813–821. https://doi.org/10.1093/jamia/ocw180
Devlin, J., Chang, M. W., Lee, K., &Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1(Mlm), 4171–4186.
Edwards, B. J., Bunta, A. D., Lane, J., Odvina, C., Rao, D. S., Raisch, D. W., …Stern, P. H. (2013). Bisphosphonates and Nonhealing Femoral Fractures: Analysis of the FDA Adverse Event Reporting System (FAERS) and International Safety Efforts. The Journal of Bone and Joint Surgery-American Volume, 95(4), 297–307. https://doi.org/10.2106/jbjs.k.01181
Fan, B., Fan, W., Smith, C., &Garner, H. “Skip.” (2020). Adverse drug event detection and extraction from open data: A deep learning approach. Information Processing and Management, 57(1), 102131. https://doi.org/10.1016/j.ipm.2019.102131
Gurulingappa, H., Mateen-Rajpu, A., &Toldo, L. (2012). Extraction of potential adverse drug events from medical case reports. Journal of Biomedical Semantics, 3(1), 1–10. https://doi.org/10.1186/2041-1480-3-15
Hakkarainen, K. M., Hedna, K., Petzold, M., &Hägg, S. (2012). Percentage of patients with preventable adverse drug reactions and preventability of adverse drug reactions - a meta-analysis. PLoS ONE, 7(3), 11–13. https://doi.org/10.1371/journal.pone.0033236
Hochreiter, S. (1997). Long Short-Term Memory. 1780, 1735–1780.
Korkontzelos, I., Nikfarjam, A., Shardlow, M., Sarker, A., Ananiadou, S., &Gonzalez, G. H. (2016). Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts. Journal of Biomedical Informatics, 62, 148–158. https://doi.org/10.1016/j.jbi.2016.06.007
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., &Kang, J. (2020). BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234–1240. https://doi.org/10.1093/bioinformatics/btz682
Li, F., Liu, W., &Yu, H. (2018). Extraction of Information Related to Adverse Drug Events from Electronic Health Record Notes: Design of an End-to-End Model Based on Deep Learning. JMIR Medical Informatics, 6(4), e12159. https://doi.org/10.2196/12159
Li, H., Guo, X. J., Ye, X. F., Jiang, H., Du, W. M., Xu, J. F., …He, J. (2014). Adverse drug reactions of spontaneous reports in Shanghai pediatric population. PLoS ONE, 9(2), 1–6. https://doi.org/10.1371/journal.pone.0089829
Lin, C., Miller, T., Dligach, D., Bethard, S., &Savova, G. (2019). A BERT-based Universal Model for Both Within- and Cross-sentence Clinical Temporal Relation Extraction. Proceedings of the 2nd Clinical Natural Language Processing Workshop, 2, 65–71.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., …Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. (1). Retrieved from http://arxiv.org/abs/1907.11692
Lopez-Gonzalez, E., Herdeiro, M. T., &Figueiras, A. (2009). Determinants of under-reporting of adverse drug reactions: A systematic review. Drug Safety, 32(1), 19–31. https://doi.org/10.2165/00002018-200932010-00002
McMaster, C., Liew, D., Keith, C., Aminian, P., &Frauman, A. (2019). A Machine-Learning Algorithm to Optimise Automated Adverse Drug Reaction Detection from Clinical Coding. Drug Safety, 42(6), 721–725. https://doi.org/10.1007/s40264-018-00794-y
Mikolov, T., Chen, K., Corrado, G., &Dean, J. (2013). Efficient estimation of word representations in vector space. 1st International Conference on Learning Representations, ICLR 2013 - Workshop Track Proceedings, 1–12.
Mohsen, A., Tripathi, L. P., &Mizuguchi, K. (2020). Deep Learning Prediction of Adverse Drug Reactions Using Open TG-GATEs and FAERS Databases. Retrieved from http://arxiv.org/abs/2010.05411
National Council of State Boards of Nursing. (2011). White paper: a nurse’s guide to the use of social media. The Journal of Practical Nursing, 61(3), 3–9.
Nikfarjam, A., Sarker, A., O’Connor, K., Ginn, R., &Gonzalez, G. (2015). Pharmacovigilance from social media: Mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. Journal of the American Medical Informatics Association, 22(3), 671–681. https://doi.org/10.1093/jamia/ocu041
Powell, G. E., Seifert, H. A., Reblin, T., Burstein, P. J., Blowers, J., Menius, J. A., …Dasgupta, N. (2016). Social Media Listening for Routine Post-Marketing Safety Surveillance. Drug Safety, 39(5), 443–454. https://doi.org/10.1007/s40264-015-0385-6
Sarker, A., Ginn, R., Nikfarjam, A., O’Connor, K., Smith, K., Jayaraman, S., …Gonzalez, G. (2015). Utilizing social media data for pharmacovigilance: A review. Journal of Biomedical Informatics, 54, 202–212. https://doi.org/10.1016/j.jbi.2015.02.004
Sarker, A., Nikfarjam, A., &Gonzalez, G. (2016). Social media mining shared task workshop. Pacific Symposium on Biocomputing, 581–592. https://doi.org/10.1142/9789814749411_0054
Scepanovic, S., Martin-Lopez, E., Quercia, D., &Baykaner, K. (2020). Extracting medical entities from social media. ACM CHIL 2020 - Proceedings of the 2020 ACM Conference on Health, Inference, and Learning, 170–181. https://doi.org/10.1145/3368555.3384467
Sousa, D., Lamurias, A., &Couto, F. M. (2019). A silver standard corpus of human phenotype-gene relations. NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1, 1487–1492. https://doi.org/10.18653/v1/n19-1152
Tapi Nzali, M. D., Bringay, S., Lavergne, C., Mollevi, C., &Opitz, T. (2017). What Patients Can Tell Us: Topic Analysis for Social Media on Breast Cancer. JMIR Medical Informatics, 5(3), e23. https://doi.org/10.2196/medinform.7779
Tatonetti, N. P., Denny, J. C., Murphy, S. N., Fernald, G. H., Krishnan, G., Castro, V., …Altman, R. B. (2011). Detecting drug interactions from adverse-event reports: Interaction between paroxetine and pravastatin increases blood glucose levels. Clinical Pharmacology and Therapeutics, 90(1), 133–142. https://doi.org/10.1038/clpt.2011.83
Viscounty, B. P., &Barry, J. L. (2010). How Discoverable Is Social Media Content?
Yang, C. C., Jiang, L., Yang, H., &Tang, X. (2012). Detecting Signals of Adverse Drug Reactions from Health Consumer Contributed Content in Social Media. Hi-Kkd ’12, (May 2016).
Yang, C. C., Yang, H., Jiang, L., &Zhang, M. (2012). Social media mining for drug safety signal detection. International Conference on Information and Knowledge Management, Proceedings, 33–40. https://doi.org/10.1145/2389707.2389714 |