博碩士論文 108453012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:52.15.241.87
姓名 謝博尊(Po-Tsun Hsieh)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 以深度學習為基礎之頻譜辨識反向推薦系統
(Reverse Recommendation System with Spectrogram Recognition Based on Deep Learning)
相關論文
★ 台灣50走勢分析:以多重長短期記憶模型架構為基礎之預測★ 以多重遞迴歸神經網路模型為基礎之黃金價格預測分析
★ 增量學習用於工業4.0瑕疵檢測★ 遞回歸神經網路於電腦零組件銷售價格預測之研究
★ 長短期記憶神經網路於釣魚網站預測之研究★ 基於深度學習辨識跳頻信號之研究
★ Opinion Leader Discovery in Dynamic Social Networks★ 深度學習模型於工業4.0之機台虛擬量測應用
★ A Novel NMF-Based Movie Recommendation with Time Decay★ 以類別為基礎sequence-to-sequence模型之POI旅遊行程推薦
★ A DQN-Based Reinforcement Learning Model for Neural Network Architecture Search★ Neural Network Architecture Optimization Based on Virtual Reward Reinforcement Learning
★ 生成式對抗網路架構搜尋★ 以漸進式基因演算法實現神經網路架構搜尋最佳化
★ Enhanced Model Agnostic Meta Learning with Meta Gradient Memory★ 遞迴類神經網路結合先期工業廢水指標之股價預測研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 在數位音樂蓬勃發展的現在,協助使用者找到感興趣內容的推薦系統已日益重要。以往推薦系統大多採用協同過濾(Collaborative Filtering, CF)及物件內容相關特徵資料作為分析方法及標的。然而協同過濾方法容易受到冷啟動或者熱門度之影響,且物件內容相關特徵資料也難以深入描述物件吸引使用者之特性。在本研究中,通過將協同過濾之矩陣分解(Matrix factorization, MF)方法結合卷積神經網絡(Convolutional Neural Network, CNN)分析音樂之頻譜圖,開發了一種新型的推薦系統Spec-Rec。使用KKBOX WSDM Cup 2018: Music Recommendation and Churn Prediction 資料集進行實作驗證。最後實驗結果顯示Spec-Rec系統與競賽中之頂尖模型有相當之預測水準。且使用訓練完之模型用來預測其他不在訓練範圍內之音樂也能保持穩定之預測水準。證明本系統藉由直接分析使用者對於音樂的偏好特徵,在評價資料稀缺的狀況下也能將音樂推薦給適合的使用者。
摘要(英) Nowadays, digital music booms rapidly. The recommendation system which helps users to find the music they like becomes more and more important. In the past, most recommendation systems analyze by using Collaborative Filtering (CF) or related metadata. However, CF are usually affected by Data Cold Start Problem or Popularity Bias of the item. Also, the metadata cannot describe the feature of the item which attracts users’ attention. In this article, by raising a new type of recommendation system called Spec-Rec, a combination of Matrix Factorization (MF) with Collaborative Filtering and Convolutional Neural Network (CNN), to analyze the spectrogram of music. The experiment uses KKBOX WSDM Cup 2018: Music Recommendation and Churn Prediction dataset for validation. The experimental results show that the Spec-Rec is competitive with the model of the top class in the KKBOX WSDM challenge. Also, the trained model can be used to predict the music outside the training data and can provide a stable performance. According to the results, Spec-Rec system can recommend music to the adequate users by analyzing spectrogram of music and user latent vector even when there is a lack of rating data of music and user preference.
關鍵字(中) ★ 深度學習
★ 推薦系統
★ 矩陣分解
★ 卷積神經網絡
關鍵字(英) ★ Deep Learning
★ Recommendation System
★ Matrix Factorization (MF)
★ Convolutional Neural Network(CNN)
論文目次 摘 要 i
Abstract ii
誌 謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究貢獻 3
1.4 論文架構 3
第二章 文獻探討 4
2.1 推薦系統 4
2.2 推薦系統相關研究 5
2.3 音樂分析相關研究 6
第三章 Spec-Rec系統 7
3.1 矩陣分解 7
3.2 頻譜圖卷積神經網絡 8
3.3 預測與推薦 10
第四章 實驗結果 12
4.1 實驗環境 12
4.2 資料集 12
4.3 實驗模型介紹 14
4.3.1 實驗模型介紹-Spec-Rec 14
4.3.2 實驗模型介紹-協同過濾(CF) 17
4.4 實驗模型評估 20
4.5 系統有效性驗證 23
第五章 結論 26
5.1 實驗結論 26
5.2 實驗限制 27
5.3 未來研究建議 27
第六章 參考資料 28
參考文獻 Aggarwal, C. C. (2016). Content-Based Recommender Systems. In C. C. Aggarwal (Ed.), Recommender Systems: The Textbook (pp. 139–166). Springer International Publishing. https://doi.org/10.1007/978-3-319-29659-3_4
Bahuleyan, H. (2018). Music Genre Classification using Machine Learning Techniques. ArXiv:1804.01149 [Cs, Eess]. http://arxiv.org/abs/1804.01149
Beat KKBox Benchmark without using metadata [0.62]. (2018). https://kaggle.com/lystdo/beat-kkbox-benchmark-without-using-metadata-0-62
Bobadilla, J., Ortega, F., Hernando, A., & Bernal, J. (2012). A collaborative filtering approach to mitigate the new user cold start problem. Knowledge-Based Systems, 26, 225–238. https://doi.org/10.1016/j.knosys.2011.07.021
B.Thorat, P., M. Goudar, R., & Barve, S. (2015). Survey on Collaborative Filtering, Content-based Filtering and Hybrid Recommendation System. International Journal of Computer Applications, 110(4), 31–36. https://doi.org/10.5120/19308-0760
Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction, 12(4), 331–370. https://doi.org/10.1023/A:1021240730564
Celma, Ò. (2010). Music Recommendation. In Ò. Celma (Ed.), Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space (pp. 43–85). Springer. https://doi.org/10.1007/978-3-642-13287-2_3
Chen, Y., Xie, X., Lin, S.-D., & Chiu, A. (2018). WSDM Cup 2018: Music Recommendation and Churn Prediction. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 8–9. https://doi.org/10.1145/3159652.3160605
Deng, J. J., & Leung, C. (2012). Emotion-based music recommendation using audio features and user playlist. 2012 6th International Conference on New Trends in Information Science, Service Science and Data Mining (ISSDM2012), 796–801.
Downie, J. S. (2003). Music information retrieval. Annual Review of Information Science and Technology, 37(1), 295–340. https://doi.org/10.1002/aris.1440370108
Dziugaite, G. K., & Roy, D. M. (2015). Neural Network Matrix Factorization. ArXiv:1511.06443 [Cs, Stat]. http://arxiv.org/abs/1511.06443
Greenland, S., Mansournia, M. A., & Altman, D. G. (2016). Sparse data bias: A problem hiding in plain sight. BMJ, 352, i1981. https://doi.org/10.1136/bmj.i1981
Hussain, M., Bird, J. J., & Faria, D. R. (2019). A Study on CNN Transfer Learning for Image Classification. In A. Lotfi, H. Bouchachia, A. Gegov, C. Langensiepen, & M. McGinnity (Eds.), Advances in Computational Intelligence Systems (pp. 191–202). Springer International Publishing. https://doi.org/10.1007/978-3-319-97982-3_16
Kowald, D., Schedl, M., & Lex, E. (2020). The Unfairness of Popularity Bias in Music Recommendation: A Reproducibility Study. In J. M. Jose, E. Yilmaz, J. Magalhães, P. Castells, N. Ferro, M. J. Silva, & F. Martins (Eds.), Advances in Information Retrieval (pp. 35–42). Springer International Publishing. https://doi.org/10.1007/978-3-030-45442-5_5
Li, Q., Kim, B. M., Guan, D. H., & Oh, D. whan. (2004). A music recommender based on audio features. Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 532–533. https://doi.org/10.1145/1008992.1009106
Lü, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K., & Zhou, T. (2012). Recommender Systems. Physics Reports, 519(1), 1–49. https://doi.org/10.1016/j.physrep.2012.02.006
M, H., & M.N, S. (2015). A Review on Evaluation Metrics for Data Classification Evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), 01–11. https://doi.org/10.5121/ijdkp.2015.5201
Matrix Factorization Techniques for Recommender Systems | IEEE Journals & Magazine | IEEE Xplore. (2009). https://ieeexplore.ieee.org/document/5197422
McNee, S. M., Riedl, J., & Konstan, J. A. (2006). Being accurate is not enough: How accuracy metrics have hurt recommender systems. In CHI ’06 Extended Abstracts on Human Factors in Computing Systems (pp. 1097–1101). Association for Computing Machinery. https://doi.org/10.1145/1125451.1125659
Mobasher, B., Burke, R., Bhaumik, R., & Williams, C. (2007). Toward trustworthy recommender systems: An analysis of attack models and algorithm robustness. ACM Transactions on Internet Technology, 7(4), 23-es. https://doi.org/10.1145/1278366.1278372
Rentfrow, P. J., & Gosling, S. D. (2003). The do re mi’s of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 84(6), 1236–1256. https://doi.org/10.1037/0022-3514.84.6.1236
RIAA. (n.d.). U.S. Sales Database. RIAA. Retrieved July 25, 2021, from https://www.riaa.com/u-s-sales-database/
Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative Filtering Recommender Systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The Adaptive Web: Methods and Strategies of Web Personalization (pp. 291–324). Springer. https://doi.org/10.1007/978-3-540-72079-9_9
Solovyev, R., Vakhrushev, M., Radionov, A., Aliev, V., & Shvets, A. (2018). Deep Learning Approaches for Understanding Simple Speech Commands.
Song, Y., Dixon, S., & Pearce, M. (n.d.). A Survey of Music Recommendation Systems and Future Perspectives. 16.
Su, J., Yeh, H., Yu, P. S., & Tseng, V. S. (2010). Music Recommendation Using Content and Context Information Mining. IEEE Intelligent Systems, 25(1), 16–26. https://doi.org/10.1109/MIS.2010.23
Vrysis, L., Thoidis, I., Dimoulas, C., & Papanikolaou, G. (2020, May 28). Experimenting with 1D CNN Architectures for Generic Audio Classification. Audio Engineering Society Convention 148. https://www.aes.org/e-lib/browse.cfm?elib=20746
WSDM - KKBox’s Music Recommendation Challenge. (2018). https://kaggle.com/c/kkbox-music-recommendation-challenge
秦艳婷. (2016, March 1). 基于反向推荐的个性化推荐算法研究—《电子科技大学》2016年硕士论文. http://cdmd.cnki.com.cn/Article/CDMD-10614-1016176319.htm
指導教授 陳以錚(Yi-Cheng Chen) 審核日期 2021-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明