參考文獻 |
Aggarwal, C. C. (2016). Content-Based Recommender Systems. In C. C. Aggarwal (Ed.), Recommender Systems: The Textbook (pp. 139–166). Springer International Publishing. https://doi.org/10.1007/978-3-319-29659-3_4
Bahuleyan, H. (2018). Music Genre Classification using Machine Learning Techniques. ArXiv:1804.01149 [Cs, Eess]. http://arxiv.org/abs/1804.01149
Beat KKBox Benchmark without using metadata [0.62]. (2018). https://kaggle.com/lystdo/beat-kkbox-benchmark-without-using-metadata-0-62
Bobadilla, J., Ortega, F., Hernando, A., & Bernal, J. (2012). A collaborative filtering approach to mitigate the new user cold start problem. Knowledge-Based Systems, 26, 225–238. https://doi.org/10.1016/j.knosys.2011.07.021
B.Thorat, P., M. Goudar, R., & Barve, S. (2015). Survey on Collaborative Filtering, Content-based Filtering and Hybrid Recommendation System. International Journal of Computer Applications, 110(4), 31–36. https://doi.org/10.5120/19308-0760
Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction, 12(4), 331–370. https://doi.org/10.1023/A:1021240730564
Celma, Ò. (2010). Music Recommendation. In Ò. Celma (Ed.), Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space (pp. 43–85). Springer. https://doi.org/10.1007/978-3-642-13287-2_3
Chen, Y., Xie, X., Lin, S.-D., & Chiu, A. (2018). WSDM Cup 2018: Music Recommendation and Churn Prediction. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 8–9. https://doi.org/10.1145/3159652.3160605
Deng, J. J., & Leung, C. (2012). Emotion-based music recommendation using audio features and user playlist. 2012 6th International Conference on New Trends in Information Science, Service Science and Data Mining (ISSDM2012), 796–801.
Downie, J. S. (2003). Music information retrieval. Annual Review of Information Science and Technology, 37(1), 295–340. https://doi.org/10.1002/aris.1440370108
Dziugaite, G. K., & Roy, D. M. (2015). Neural Network Matrix Factorization. ArXiv:1511.06443 [Cs, Stat]. http://arxiv.org/abs/1511.06443
Greenland, S., Mansournia, M. A., & Altman, D. G. (2016). Sparse data bias: A problem hiding in plain sight. BMJ, 352, i1981. https://doi.org/10.1136/bmj.i1981
Hussain, M., Bird, J. J., & Faria, D. R. (2019). A Study on CNN Transfer Learning for Image Classification. In A. Lotfi, H. Bouchachia, A. Gegov, C. Langensiepen, & M. McGinnity (Eds.), Advances in Computational Intelligence Systems (pp. 191–202). Springer International Publishing. https://doi.org/10.1007/978-3-319-97982-3_16
Kowald, D., Schedl, M., & Lex, E. (2020). The Unfairness of Popularity Bias in Music Recommendation: A Reproducibility Study. In J. M. Jose, E. Yilmaz, J. Magalhães, P. Castells, N. Ferro, M. J. Silva, & F. Martins (Eds.), Advances in Information Retrieval (pp. 35–42). Springer International Publishing. https://doi.org/10.1007/978-3-030-45442-5_5
Li, Q., Kim, B. M., Guan, D. H., & Oh, D. whan. (2004). A music recommender based on audio features. Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 532–533. https://doi.org/10.1145/1008992.1009106
Lü, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K., & Zhou, T. (2012). Recommender Systems. Physics Reports, 519(1), 1–49. https://doi.org/10.1016/j.physrep.2012.02.006
M, H., & M.N, S. (2015). A Review on Evaluation Metrics for Data Classification Evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), 01–11. https://doi.org/10.5121/ijdkp.2015.5201
Matrix Factorization Techniques for Recommender Systems | IEEE Journals & Magazine | IEEE Xplore. (2009). https://ieeexplore.ieee.org/document/5197422
McNee, S. M., Riedl, J., & Konstan, J. A. (2006). Being accurate is not enough: How accuracy metrics have hurt recommender systems. In CHI ’06 Extended Abstracts on Human Factors in Computing Systems (pp. 1097–1101). Association for Computing Machinery. https://doi.org/10.1145/1125451.1125659
Mobasher, B., Burke, R., Bhaumik, R., & Williams, C. (2007). Toward trustworthy recommender systems: An analysis of attack models and algorithm robustness. ACM Transactions on Internet Technology, 7(4), 23-es. https://doi.org/10.1145/1278366.1278372
Rentfrow, P. J., & Gosling, S. D. (2003). The do re mi’s of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 84(6), 1236–1256. https://doi.org/10.1037/0022-3514.84.6.1236
RIAA. (n.d.). U.S. Sales Database. RIAA. Retrieved July 25, 2021, from https://www.riaa.com/u-s-sales-database/
Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative Filtering Recommender Systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The Adaptive Web: Methods and Strategies of Web Personalization (pp. 291–324). Springer. https://doi.org/10.1007/978-3-540-72079-9_9
Solovyev, R., Vakhrushev, M., Radionov, A., Aliev, V., & Shvets, A. (2018). Deep Learning Approaches for Understanding Simple Speech Commands.
Song, Y., Dixon, S., & Pearce, M. (n.d.). A Survey of Music Recommendation Systems and Future Perspectives. 16.
Su, J., Yeh, H., Yu, P. S., & Tseng, V. S. (2010). Music Recommendation Using Content and Context Information Mining. IEEE Intelligent Systems, 25(1), 16–26. https://doi.org/10.1109/MIS.2010.23
Vrysis, L., Thoidis, I., Dimoulas, C., & Papanikolaou, G. (2020, May 28). Experimenting with 1D CNN Architectures for Generic Audio Classification. Audio Engineering Society Convention 148. https://www.aes.org/e-lib/browse.cfm?elib=20746
WSDM - KKBox’s Music Recommendation Challenge. (2018). https://kaggle.com/c/kkbox-music-recommendation-challenge
秦艳婷. (2016, March 1). 基于反向推荐的个性化推荐算法研究—《电子科技大学》2016年硕士论文. http://cdmd.cnki.com.cn/Article/CDMD-10614-1016176319.htm |