博碩士論文 108423056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:114 、訪客IP:3.136.22.184
姓名 黃柏鈞(Po-Chun Huang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 應用深度學習以心理特徵與自然語言預測網路霸凌行為
(Prediction of Cyberbullying by Deep Learning with Natural Language and Psychology Features)
相關論文
★ 技術商品銷售之技術人員關鍵職能探討★ 資訊委外之承包商能力、信任及溝通與委外成效關係之個案研究
★ 兵工技術軍官職能需求分析-以某軍事工廠為例★ 不同楷模學習模式對VB程式語言學習之影響
★ 影響採購「網路資料中心產品」因素之探討★ 資訊人員績效評估之研究—以陸軍某資訊單位為例
★ 高職資料處理科學生網路成癮相關因素及其影響之探討★ 資訊服務委外對資訊部門及人員之衝擊-某大型外商公司之個案研究
★ 二次導入ERP系統之研究-以某個案公司為例★ 資料倉儲於證券產業應用之個案研究
★ 影響消費者採用創新數位產品之因素---以整合式手機為例★ 企業合併下資訊系統整合過程之個案研究
★ 資料倉儲系統建置之個案研究★ 電子表單系統導入之探討 - 以 A 公司為例
★ 企業資訊安全機制導入與評估–以H公司為例★ 從人力網站探討國內資訊人力現況–以104銀行資料為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 本研究旨在提出架構以心理特徵(數值)結合文本應用深度學習預測網路霸凌行為,不同於過去研究只由文本或心理特徵(數值)的單一方式訓練模型進行預測,本研究擬調用IBM API分析網路貼文中的情緒、情感以及發文者的五型人格傾向。文本方面,本研究使用的詞嵌入模型有GloVe與Word2Vec,並依據實驗結果提出較適合本研究的詞嵌入模型。
  在文本結合心理特徵(數值)輸入雙向長短期記憶神經網路串接全連接神經網路的部分則較單純使用心理特徵(數值)輸入全連接神經網路在各項指標中更佳,在epoch (訓練期數)本研究實驗10、20與30的組合,在epoch為20的情況下在各項指標的結果最佳。比較epoch同為20的狀況下loss值由0.3673下降至0.2842,F1 score提升近6% 。除了進行網路霸凌行為預測外,本研究亦探討各個心理特徵與網路霸凌行為間的相關性。
  本研究結果可提供社群媒體網站一個預測機制,應用於預警或篩選出含有網路霸凌成分的貼文,並提供給社群媒體平台經營方,即早覺察在文本中顯露出的相關負面人格、情緒與情感。避免惡意傷害的貼文對網路使用者造成傷害。
摘要(英) This research aims to propose a new method to predict cyberbullying behavior by combining psychology features with text. Each of the many posts on the Internet contains their own emotions, personalities and their sentiments at the moment of posting. These emotions, sentiments and personalities can be identified through applications. In terms of text, the Word Embedding methods used in this study are GloVe and Word2Vec. We compared them and proposed the methods which more suitable for this study. It is different from the past research that only used a one-way information method of text or psychology features values to train models to make predictions.  
  The use of text and psychological features, in contrast of purely using numerical data, loss value drops from 0.3673 to 0.2842 and F1 score increase by nearly 5% under the same epoch. This study in the epoch (Number of training periods) has experimented with a combination of 10, 20, and 30, the results of each metrics are the best when the epoch is 20. In addition to predicting cyberbullying, this research also explores the correlation between various psychological features and cyberbullying.
  The results of this research confirmed our proposed approach to be a useful detection mechanism for social media websites to provide an early warning or to screen out maliciously posts occurred in Internet.
關鍵字(中) ★ 深度學習
★ 情緒
★ 情感極性
★ 網路霸凌
★ 五型人格
關鍵字(英) ★ Deep learning
★ Emotion
★ Sentiment polarity
★ Cyberbullying
★ Big Five personalities
論文目次 摘要...............................................i
Abstract..........................................ii
誌謝.............................................iii
目錄..............................................iv
圖目錄.............................................v
表目錄............................................vi
緒論...............................................1
1.1 研究背景......................................1
1.2 研究動機......................................2
1.3 研究目的......................................4
第二章、 文獻探討..................................5
2.1 網路霸凌相關研究...............................5
2.2 應用機器學習於網路霸凌的相關研究.................8
2.3 機器學習與深度學習.............................10
2.4 五型人格特質...................................13
2.5 自然語言處理相關研究............................16
第三章、 研究方法..................................18
3.1 資料集來源.....................................18
3.2 研究流程.......................................19
3.3 IBM Tone Analyzer.............................20
3.4 資料篩選.......................................22
3.5 文字資料前處理..................................24
3.6 神經網路建構....................................28
3.7 實驗環境設置....................................34
第四章、 實驗結果與分析..............................35
4.1 資料集分析......................................35
4.2 Bi-LSTM與Fully-connected 神經網路建構...........36
4.3 神經網路的實驗結果...............................37
4.4 SHAP (沙普利值法)特徵重要度與皮爾森相關係數..................................................42
第五章、 結論.......................................45
5.1 結論...........................................45
5.2 研究限制與未來研究方向.................................................46
5.3 研究貢獻.......................................47
參考文獻............................................48
網路文獻............................................55
參考文獻 Abaido, G. M. (2020). Cyberbullying on social media platforms among university students in the United Arab Emirates. International Journal of Adolescence and Youth, 25(1), 407-420.

Alonso, C. & Romero, E. (2017). Aggressors and victims in bullying and cyberbullying: A study of personality profiles using the Five-Factor model. The Spanish Journal of Psychology, 20, 1-14.

Azucar, D., Marengo, D., & Settanni, M. (2018). Predicting the Big 5 personality traits from digital footprints on social media: A Meta-Analysis. Personality and Individual Differences, 124, 150-159.

Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. (2017). Deep Learning for Hate Speech Detection in Tweets. Proceedings of the 26th International Conference on World Wide Web Companion, 759-760.

Balaji, A. J., Ram, D. H., & Nair, B. B. (2018). Applicability of Deep Learning models for stock price forecasting: An empirical study on BANKEX data. Procedia Computer Science, 143, 947-953.

Balakrishnan, V., Khan, S., Fernandez, T., & Arabnia, H. R. (2019). Cyberbullying detection on Twitter using Big Five and dark triad features. Personality and Individual Differences, 141, 252-257.

Barrick, M. R. & Mount, M. K. (1991). The Big Five personality dimensions and job performance: A Meta-Analysis. Personnel Psychology, 44(1), 1-26.

Bekkar, M., Djemaa, H., & Alitouche, T.A. (2013). Evaluation measures for models assessment over imbalanced datasets. Journal of Information Engineering and Applications, 3, 27-38.

Berry, M. W. & Kogan, J. (2010). Text Mining applications and theory. Chichester, SXW: John Wiley & Sons.

Bishop, C. (2007). Pattern recognition and Machine Learning. Journal of Electronic Imaging, 16(4), 049901.

Chatzakou, D., Kourtellis, N., Blackburn, J., Cristofaro, E. D., Stringhini, G., & Vakali, A. (2017). Mean Birds: Detecting aggression and bullying on Twitter. Proceedings of the 2017 ACM on Web Science Conference, 13-22.

Chen, P. L., Cheng, Y. C., & Chen, K. (2018). Analysis of social media data: An introduction to the characteristics and chronological process. New York, NY: Springer.

Ching, C. M., Church, A. T., Katigbak, M. S., Reyes, J. A. S., Tanaka-Matsumi, J., Takaoka, S., …Ortiz, F. A. (2014). The manifestation of traits in everyday behavior and affect: A five-culture study. Journal of Research in Personality, 48, 1-16.

Coloroso, B. (2004). The bully, the bullied, and the bystander: From preschool to high school: How parents and teachers can help break the cycle of violence. New York, NY: Quill.

Dinakar, K., Reichart, R., & Lieberman, H. (2011). Modeling the Detection of Textual Cyberbullying. Proceedings of the International AAAI Conference on Web and Social Media, 5(1), 11-17.

EIBolock, A. (2018). Defining character computing from the perspective of computer science and psychology. In proceedings of the 17th International Conference on Mobile and Ubiquitous Multimedia, 567-572.


Eichie, J. O., Oyedum, O. D., Ajewole, M. O., & Aibinu, A. M. (2017). Artificial neural network model for the determination of GSM Rxlevel from atmospheric parameters. Engineering Science and Technology, An International Journal, 20(2), 795-804.

Fegenbush, B. S. & Olivier, D. F. (2009). Cyberbullying: A literature review. In Annual Meeting of the Louisiana Education Research Association, 1-70.

Festl, R. & Quandt, T. (2013). Social relations and cyberbullying: The influence of individual and structural attributes on victimization and perpetration via the internet. Human Communication Research, 39, 101-126.

Gao, Y., González, V. A., & Yiu, T. W. (2019). The effectiveness of traditional tools and Computer-Aided technologies for health and safety training in the construction sector: A systematic review. Computers & Education, 138(1), 101-115.

Heaton, J. (2017). Deep Learning. Genetic Programming and Evolvable Machines, 19, 305-307.

Heinrich, K., Zschech, P., Janiesch, C. & Bonin, M. (2021). Process data properties matter: Introducing gated Convolutional Neural Networks (GCNN) and Key-Value-Predict Attention Networks (KVP) for next event prediction with Deep Learning. Decision Support Systems, 143, 1-14.

Hinduja, S. & Patchin, J. W. (2010). Bullying, cyberbullying, and suicide. Archives of Suicide Research, 14(3), 206-221.

Horn, E. K., Bartak, A., Meerman, A. M., Rossum, B. V., Ziegler, U. M., Thunnissen, M., …Verheul, R. (2014). Effectiveness of Psychotherapy in personality disorders not otherwise specified: A comparison of different treatment modalities. Clinical Psychology & Psychotherapy, 22(5), 426-442.

Hosseinmardi, H., Mattson, S. A., Rafiq, R. I., Han, R., Lv, Q., & Mishra, S. (2015). Analyzing labeled cyberbullying incidents on the Instagram social network. Lecture Notes in Computer Science Social Informatics, 9471, 49-66.

Huang, Y. & Su, S. (2018). Motives for Instagram use and topics of interest among young adults. Future Internet, 10(8), 77-88.

Islam, M. M., Uddin, M. A., Islam, L., Akter, A., Sharmin, S., & Acharjee, U. K. (2020). Cyberbullying detection on social networks using Machine Learning approaches. 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), 1-6.

Kircaburun, K. & Griffiths, M. D. (2018). Problematic Instagram use: The role of perceived feeling of presence and escapism. International Journal of Mental Health and Addiction, 17(4), 909-921.

Kircaburun, K. & Griffiths, M. D. (2019). Instagram addiction and the Big Five of personality: The mediating role of self-liking. Journal of Behavioral Addictions, 7(1), 158-170.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th international joint conference on Artificial intelligence, 14(2), 1137-1145.

Kop, M., Read, P., & Walker, B. R. (2019). Pseudocommando mass murderers: A Big Five personality profile using Psycholinguistics. Current Psychology, 40(6), 3015-3023.

Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V., & Stillwell, D. (2015). Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines. The American Psychologist, 70(6), 543-556.
Li, T. B. (2005). Cyber-harassment: A study of a new method for an old behavior. Journal of Educational Computing Research, 32(3), 265-277.

Lim, W. L., Ho, C. C., & Ting, C. (2020). Sentiment analysis by fusing text and location features of geo-tagged tweets. IEEE Access, 8, 181014-181027.

Lounsbury, J. W. (2002). Book review: The Big Five personality factors: The Psycholexical approach to personality. Journal of Psychoeducational Assessment, 20(3), 309-311.

Lyu, C., Chen, B., Ren, Y., & Ji, D. (2017). Long Short-Term Memory RNN for biomedical named entity recognition. BMC Bioinformatics, 18(1), 462-472.

Mairesse, F., & Walker, M. (2006). Words Mark the Nerds: Computational Models of Personality Recognition through Language. Proceedings of the Annual Meeting of the Cognitive Science Society, 28, 543-548.

McCrae, R. R. & John, O. P. (1992). An introduction to the five-factor model and its applications. Journal of Personality, 60(2), 175-215.

Méndez, I., Jorquera, A. B., Ruiz-Esteban, C., Martínez-Ramón, J. P., & Fernández-Sogorb, A. (2019). Emotional Intelligence, bullying, and cyberbullying in adolescents. International Journal of Environmental Research and Public Health, 16(23), 4837-4845.

Mitchell, K. J., Ybarra, M., & Finkelhor, D. (2007). The relative importance of online victimization in understanding depression, delinquency, and substance use. Child Maltreatment, 12(4), 314-324.

Mitsopoulou, E. & Giovazolias, T. (2015). Personality traits, empathy and bullying behavior: A Meta-Analytic approach. Aggression and Violent Behavior, 21, 61-72.

Mohanraj, M., Jayaraj, S., & Muraleedharan, C. (2015). Applications of artificial neural networks for thermal analysis of heat exchangers - A review. International Journal of Thermal Sciences, 90, 150-172.

Monks, C. P., Robinson, S., & Worlidge, P. (2012). The emergence of cyberbullying: A survey of primary school pupils’ perceptions and experiences. School Psychology International, 33(5), 477-491.

Montag, C., Duke, É, & Markowetz, A. (2016). Toward
Psychoinformatics: Computer science meets psychology. Computational and Mathematical Methods in Medicine, 2016, 1-10.

Olweus, D. (2005). Bullying at school: What we know and what we can do. Malden, MA: Blackwell.

Olweus, D. (2013). School bullying: Development and some important challenges. Annual Review of Clinical Psychology, 9, 751-780.

Peng, S., Yang, M., Wang, F., Li, X., Wen, Z., & Liu, L. (2021). Insurance assistant: An intelligent platform for video insurance assessment. Companion Proceedings of the Web Conference 2021, 667-668.

Pennington, J., Socher, R., & Manning, C.D. (2014). GloVe : Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532-1543.

Privitera, C. & Campbell, M. A. (2009). Cyberbullying: The new face of workplace bullying? CyberPsychology & Behavior, 12(4), 395-400.

Roy, A., Sun, J., Mahoney, R., Alonzi, L., Adams, S., & Beling, P. (2018). Deep Learning detecting fraud in credit card transactions. 2018 Systems and Information Engineering Design Symposium (SIEDS), 1, 129-134.

Schnabel, T., Labutov, I., Mimno, D. M., & Joachims, T. (2015). Evaluation methods for unsupervised word embeddings. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 298-307.

Shariff, S. (2008). Cyberbullying: Issues and solutions for the school, the classroom and the home. Oxfordshire, UK: Routledge.

Shrestha, Y. R., Krishna, V., & Krogh, G. V. (2020). Augmenting organizational decision-making with Deep Learning algorithms: Principles, promises, and challenges. Journal of Business Research, 123, 588-603.

Tani, F., Greenman, P. S., Schneider, B. H., & Fregoso, M. (2003). Bullying and the Big Five. School Psychology International, 24(2), 131-146.

Vandebosch, H. & Cleemput, K. V. (2008). Defining cyberbullying: A qualitative research into the perceptions of youngsters. CyberPsychology & Behavior, 11(4), 499-503.

Willard, N. E. (2007). Cyberbullying and cyberthreats: Responding to the challenge of online social aggression, threats, and distress. Research Press, 141-153.

Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. WIREs Data Mining and Knowledge Discovery, 8(4), 1-25.

Zhou, Y., Zheng, W., & Gao, X. (2019). The relationship between the Big Five and cyberbullying among college students: The mediating effect of moral disengagement. Current Psychology, 38(5), 1162-1173.

Banerjee, P. (2019). Data Preprocessing Project - Imbalanced Classes Problem. Retrieved November 8, 2020, from: https://github.com/pb111/Data-Preprocessing-Project-Imbalanced-Classes-Problem

Ferrario, A. & Naegelin, M. (2020). The Art of Natural Language Processing: Classical, Modern and Contemporary Approaches to Text Document Classification. Retrieved March 20, 2021, from: 10.2139/ssrn.3547887

Indianja, S. & Patchin, J. (2005). Cyberbullying Research Center. Retrieved December 8, 2020, from: https://cyberbullying.org/

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2020). Activation Functions: Comparison of trends in practice and research for Deep Learning. Retrieved December 22, 2020, from: https://arxiv.org/pdf/1811.03378.pdf

Perrin, A. & Anderson, M. (2019). Share of U.S. Adults using Social Media, including Facebook, is mostly Unchanged since 2018. Retrieved December 15, 2020, from: https://www.pewresearch.org/fact-tank/2019/04/10/share-of-u-s-adults-using-social-media-including-facebook-is-mostly-unchanged-since-2018/

Schilling, F. (2016). The effect of Batch Normalization on Deep Convolutional Neural Networks. Retrieved May 15, 2020, from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191222

Trolley, B, Hanel, C., & Shields, L. (2006). Demystifying & deescalating cyber bullying in the schools: A resource guide for counselors, educators and parents. Retrieved January 14, 2021, from: https://assets.booklocker.com/pdfs/2631s.pdf


Zhu, Y., Wu, S., Marsiglia, F. F., Wu, Q., & Chen, Q. (2021). Adaptation and validation of the European cyberbullying intervention project questionnaire with and for Chinese adolescents. Retrieved June 15, 2020, from: https://doi.org/10.1111/hsc.13466
指導教授 周惠文(Huey-Wen Chou) 審核日期 2021-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明