參考文獻 |
Almeida, F., &Xexéo, G. (2019). Word Embeddings: A Survey. Retrieved from http://arxiv.org/abs/1901.09069
Alonso, A., Krijthe, B. P., Aspelund, T., Stepas, K. A., Pencina, M. J., Moser, C. B., …Benjamin, E. J. (2013). Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium. Journal of the American Heart Association, 2(2). https://doi.org/10.1161/JAHA.112.000102
Alpert, J. S. (2019, April 1). The Electronic Medical Record: Beauty and the Beast. American Journal of Medicine, Vol. 132, pp. 393–394. Elsevier Inc. https://doi.org/10.1016/j.amjmed.2018.12.004
Aronson, A. R. (2001). Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proceedings / AMIA ... Annual Symposium. AMIA Symposium, 17–21. Retrieved from /pmc/articles/PMC2243666/?report=abstract
Aronson, Alan R., &Lang, F. M. (2010). An overview of MetaMap: Historical perspective and recent advances. Journal of the American Medical Informatics Association, 17(3), 229–236. https://doi.org/10.1136/jamia.2009.002733
Bergström, L., Irewall, A. L., Söderström, L., Ögren, J., Laurell, K., &Mooe, T. (2017, August 1). One-Year Incidence, Time Trends, and Predictors of Recurrent Ischemic Stroke in Sweden from 1998 to 2010: An Observational Study. Stroke, Vol. 48, pp. 2046–2051. Lippincott Williams and Wilkins. https://doi.org/10.1161/STROKEAHA.117.016815
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Chen, T., &Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. Association for Computing Machinery. https://doi.org/10.1145/2939672.2939785
Cortes, C., &Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/bf00994018
Devlin, J., Chang, M. W., Lee, K., &Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1, 4171–4186. Association for Computational Linguistics (ACL). Retrieved from https://github.com/tensorflow/tensor2tensor
Feigin, V. L., Forouzanfar, M. H., Krishnamurthi, R., Mensah, G. A., Connor, M., Bennett, D. A., …Naghavi, M. (2014). Global and regional burden of stroke during 1990-2010: Findings from the Global Burden of Disease Study 2010. The Lancet, 383(9913), 245–255. https://doi.org/10.1016/S0140-6736(13)61953-4
Friedlin, J., Overhage, M., Al-Haddad, M. A., Waters, J. A., Aguilar-Saavedra, J. J. R., Kesterson, J., &Schmidt, M. (2010). Comparing methods for identifying pancreatic cancer patients using electronic data sources. AMIA ... Annual Symposium Proceedings / AMIA Symposium. AMIA Symposium, 2010, 237–241. Retrieved from /pmc/articles/PMC3041435/
Gilmer, T. P., O’Connor, P. J., Sperl‐Hillen, J. M., Rush, W. A., Johnson, P. E., Amundson, G. H., …Ekstrom, H. L. (2012). Cost‐Effectiveness of an Electronic Medical Record Based Clinical Decision Support System. Health Services Research, 47(6), 2137–2158. https://doi.org/10.1111/j.1475-6773.2012.01427.x
Go, A. S., Reynolds, K., Yang, J., Gupta, N., Lenane, J., Sung, S. H., …Solomon, M. D. (2018). Association of burden of atrial fibrillation with risk of ischemic stroke in adults with paroxysmal atrial fibrillation: The KP-RHYTHM study. JAMA Cardiology, 3(7), 601–608. https://doi.org/10.1001/jamacardio.2018.1176
Goldberg, Y., &Levy, O. (2014). word2vec Explained: deriving Mikolov et al.’s negative-sampling word-embedding method. Retrieved from http://arxiv.org/abs/1402.3722
Hankey, G. J., Jamrozik, K., Broadhurst, R. J., Forbes, S., &Anderson, C. S. (2002). Long-term disability after first-ever stroke and related prognostic factors in the Perth Community Stroke Study, 1989-1990. Stroke, 33(4), 1034–1040. https://doi.org/10.1161/01.STR.0000012515.66889.24
Healey, J. S., &Wong, J. A. (2019, November 1). Pre-Screening for Atrial Fibrillation Using the Electronic Health Record. JACC: Clinical Electrophysiology, Vol. 5, pp. 1342–1343. Elsevier Inc. https://doi.org/10.1016/j.jacep.2019.08.019
Hoogendoorn, M., Szolovits, P., Moons, L. M. G., &Numans, M. E. (2016). Utilizing uncoded consultation notes from electronic medical records for predictive modeling of colorectal cancer. Artificial Intelligence in Medicine, 69, 53–61. https://doi.org/10.1016/j.artmed.2016.03.003
Horng, S., Sontag, D. A., Halpern, Y., Jernite, Y., Shapiro, N. I., &Nathanson, L. A. (2017). Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PLOS ONE, 12(4), e0174708. https://doi.org/10.1371/journal.pone.0174708
Hsieh, C. Y., Wu, D. P., &Sung, S. F. (2017). Trends in vascular risk factors, stroke performance measures, and outcomes in patients with first-ever ischemic stroke in Taiwan between 2000 and 2012. Journal of the Neurological Sciences, 378, 80–84. https://doi.org/10.1016/j.jns.2017.05.002
Hsieh, F. I., Lien, L. M., Chen, S. T., Bai, C. H., Sun, M. C., Tseng, H. P., …Hsu, C. Y. (2010). Get with the guidelines-stroke performance indicators: Surveillance of Stroke Care in the Taiwan Stroke Registry: Get with the guidelines-stroke in Taiwan. Circulation, 122(11), 1116–1123. https://doi.org/10.1161/CIRCULATIONAHA.110.936526
Hulme, O. L., Khurshid, S., Weng, L. C., Anderson, C. D., Wang, E. Y., Ashburner, J. M., …Lubitz, S. A. (2019). Development and Validation of a Prediction Model for Atrial Fibrillation Using Electronic Health Records. JACC: Clinical Electrophysiology, 5(11), 1331–1341. https://doi.org/10.1016/j.jacep.2019.07.016
Johnson, W., Onuma, O., Owolabi, M., &Sachdev, S. (2016). Stroke: A global response is needed. Bulletin of the World Health Organization, 94(9), 634A-635A. https://doi.org/10.2471/BLT.16.181636
Jones, N. R., Taylor, C. J., Hobbs, F. D. R., Bowman, L., &Casadei, B. (2020). Screening for atrial fibrillation: A call for evidence. European Heart Journal, Vol. 41, pp. 1075–1085. https://doi.org/10.1093/eurheartj/ehz834
Karnik, S., Tan, S. L., Berg, B., Glurich, I., Zhang, J., Vidaillet, H. J., …Chowdhary, R. (2012). Predicting atrial fibrillation and flutter using electronic health records. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 5562–5565. https://doi.org/10.1109/EMBC.2012.6347254
Khurshid, S., Keaney, J., Ellinor, P. T., &Lubitz, S. A. (2016). A simple and portable algorithm for identifying atrial fibrillation in the electronic medical record. American Journal of Cardiology, 117(2), 221–225. https://doi.org/10.1016/j.amjcard.2015.10.031
Kolek, M. J., Graves, A. J., Xu, M., Bian, A., Teixeira, P. L., Shoemaker, M. B., …Darbar, D. (2016). Evaluation of a prediction model for the development of atrial fibrillation in a repository of electronic medical records. JAMA Cardiology, 1(9), 1007–1013. https://doi.org/10.1001/jamacardio.2016.3366
Kwong, C., Ling, A. Y., Crawford, M. H., Zhao, S. X., &Shah, N. H. (2017). A Clinical Score for Predicting Atrial Fibrillation in Patients with Cryptogenic Stroke or Transient Ischemic Attack. Cardiology, 138(3), 133–140. https://doi.org/10.1159/000476030
Le, Q.V., &Mikolov, T. (2014). Distributed Representations of Sentences and Documents. 31st International Conference on Machine Learning, ICML 2014, 4, 2931–2939. Retrieved from http://arxiv.org/abs/1405.4053
Li, L., Chase, H. S., Patel, C. O., Friedman, C., &Weng, C. (2008). Comparing ICD9-encoded diagnoses and NLP-processed discharge summaries for clinical trials pre-screening: a case study. AMIA ... Annual Symposium Proceedings / AMIA Symposium. AMIA Symposium, 2008, 404–408. Retrieved from http://www.dbmi.columbia.edu/~chw7007/ICD.htm.
Li, Y. G., Bisson, A., Bodin, A., Herbert, J., Grammatico-Guillon, L., Joung, B., …Fauchier, L. (2019). C2HEST score and prediction of incident atrial fibrillation in poststroke patients: A French nationwide study. Journal of the American Heart Association, 8(13). https://doi.org/10.1161/JAHA.119.012546
Lip, G. Y. H., Hunter, T. D., Quiroz, M. E., Ziegler, P. D., &Turakhia, M. P. (2017). Atrial Fibrillation Diagnosis Timing, Ambulatory ECG Monitoring Utilization, and Risk of Recurrent Stroke. Circulation: Cardiovascular Quality and Outcomes, 10(1). https://doi.org/10.1161/CIRCOUTCOMES.116.002864
Mikolov, T., Chen, K., Corrado, G., &Dean, J. (2013). Efficient estimation of word representations in vector space. 1st International Conference on Learning Representations, ICLR 2013 - Workshop Track Proceedings. International Conference on Learning Representations, ICLR. Retrieved from http://ronan.collobert.com/senna/
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., &Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems. Retrieved from http://arxiv.org/abs/1310.4546
Mujtaba, G., Shuib, L., Idris, N., Hoo, W. L., Raj, R. G., Khowaja, K., …Nweke, H. F. (2019, February 1). Clinical text classification research trends: Systematic literature review and open issues. Expert Systems with Applications, Vol. 116, pp. 494–520. Elsevier Ltd. https://doi.org/10.1016/j.eswa.2018.09.034
Proietti, M., Lane, D. A., Boriani, G., &Lip, G. Y. H. (2019, May 1). Stroke Prevention, Evaluation of Bleeding Risk, and Anticoagulant Treatment Management in Atrial Fibrillation Contemporary International Guidelines. Canadian Journal of Cardiology, Vol. 35, pp. 619–633. Elsevier Inc. https://doi.org/10.1016/j.cjca.2019.02.009
Rumshisky, A., Ghassemi, M., Naumann, T., Szolovits, P., Castro, V. M., McCoy, T. H., &Perlis, R. H. (2016). Predicting early psychiatric readmission with natural language processing of narrative discharge summaries. Translational Psychiatry, 6(10), e921. https://doi.org/10.1038/tp.2015.182
Sposato, L. A., Cerasuolo, J. O., Cipriano, L. E., Fang, J., Fridman, S., Paquet, M., &Saposnik, G. (2018). Atrial fibrillation detected after stroke is related to a low risk of ischemic stroke recurrence. Neurology, 90(11), e924–e931. https://doi.org/10.1212/WNL.0000000000005126
Sposato, L. A., Cipriano, L. E., Saposnik, G., Vargas, E. R., Riccio, P. M., &Hachinski, V. (2015). Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: A systematic review and meta-analysis. The Lancet Neurology, 14(4), 377–387. https://doi.org/10.1016/S1474-4422(15)70027-X
Sung, S. F., Lin, C. Y., &Hu, Y. H. (2020). EMR-Based Phenotyping of Ischemic Stroke Using Supervised Machine Learning and Text Mining Techniques. IEEE Journal of Biomedical and Health Informatics, 24(10), 2922–2931. https://doi.org/10.1109/JBHI.2020.2976931
The GBD 2016 Lifetime Risk of Stroke Collaborators. (2018). Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016. New England Journal of Medicine, 379(25), 2429–2437. https://doi.org/10.1056/NEJMoa1804492
Uphaus, T., Weber-Krüger, M., Grond, M., Toenges, G., Jahn-Eimermacher, A., Jauss, M., …Groschel, K. (2019). Development and validation of a score to detect paroxysmal atrial fibrillation after stroke. Neurology, 92(2), E115–E124. https://doi.org/10.1212/WNL.0000000000006727
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., …Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 2017-December, 5999–6009. Neural information processing systems foundation. Retrieved from https://arxiv.org/abs/1706.03762v5
Yaghi, S., Bernstein, R. A., Passman, R., Okin, P. M., &Furie, K. L. (2017, February 3). Cryptogenic Stroke: Research and Practice. Circulation Research, Vol. 120, pp. 527–540. Lippincott Williams and Wilkins. https://doi.org/10.1161/CIRCRESAHA.116.308447
Yang, X. M., Rao, Z. Z., Gu, H. Q., Zhao, X. Q., Wang, C. J., Liu, L. P., …Wang, Y. J. (2019). Atrial Fibrillation Known Before or Detected After Stroke Share Similar Risk of Ischemic Stroke Recurrence and Death. Stroke, 50(5), 1124–1129. https://doi.org/10.1161/STROKEAHA.118.024176 |