博碩士論文 104885601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.149.25.87
姓名 阮文鐘(Nguyen Van Trung)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 使用動態非線性腦波分析方法及握力測量探討動作控制的神經機制
(Motor inhibitory control as a function of grip force and its electrophysiological dynamics were revealed with nonlinear and nonstationary of brain activity)
相關論文
★ 時間及空間對注意力暫失的影響 以及其可能的神經生理機制★ 注意力分配及眼球運動準備歷程對於眼動潛伏時間與眼動軌跡的影響
★ 注意力暫失中的數字表徵: 數字距離對注意力暫失的影響★ 利用跨顱磁刺激探討主動式注意力攫取的神經機制
★ 以數學模型及跨顱磁刺激探討注意力分配及眼球運動準備歷程★ 學齡前兒童之視覺注意力發展及電腦化注意力訓練效果之探討
★ 以跨顱磁刺激探討左側下部頂葉以及左側上部頂葉的功能在中文處理中所扮演的角色★ 性侵害犯的衝動行為表現-情緒狀態如何影響性侵害犯的抑制能力?
★ 學齡前階段孩童眼動抑制能力的發展和特性★ 學齡前階段孩童衝突解決和動作反應抑制能力的發展
★ 6歲孩童與成人在數字和具體數量上的自動化處理★ 期望效果之影響與可能的神經機制
★ Attentional reorienting: the dynamic interaction between goal-directed and stimulus-driven attentioinal control★ 前額葉眼動區在視覺搜尋作業上對不同干擾物特徵與顯示時間扮演的角色
★ Roles of the Pre-supplementary Motor Area and Right Inferior Frontal Gyrus in Stimulus Selective Stop-signal task: A Theta Burst Transcranial!Magnetic! Stimulation!Study★ Investigation of posterior parietal cortex visuospatial control over processing in near and far space using transcranial magnetic stimulation
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-8-5以後開放)
摘要(中) 在實驗室環境中,經常使用停止信號典範進行反應抑制能力的研究。然而,目前的研究證據,仍無法清楚區分注意力攫取和動作抑制歷程的機制。因此,研究者在本研究中改良了傳統的停止信號作業,在原有的作業中增添「繼續運行」的指令條件,藉此更精準地探究抑制控制的歷程。此外,研究者也合併使用能提供精細估計力量反應的握力裝置,此裝置可區分部分抑制與完全抑制的動作反應,以及同時記錄腦電波訊號。研究者將力量反應和力量反應率等指標,用於衡量研究參與者在動作抑制期間的行為反應,另採用事件相關模式(Event-related mode, ERM)、希爾伯特-黃轉換(Hilbert–Huang transform, HHT)與全息-希爾伯特頻譜分析(Holo-Hilbert Spectrum Analysis, HHSA)等新穎的腦電波數據分析技術,解析腦波訊號中的非線性和非穩態訊號,以闡明動態抑制歷程的電生理相關性。
研究結果顯示,未成功抑制的力量反應和力量反應率,隨著停止信號出現的延遲而增加,為動態抑制歷程提供了新的客觀指標。另外,側化準備電位(lateralized readiness potential, LRP)的振幅則會在新刺激出現時增加,表明了新刺激對中樞運動處理的影響。再者,本研究也發現,除了過去研究中報告中的事件相關腦電位N2 成分波之外,前期 N1 成分波也可視為動作抑制的指標 。在溯源分析結果中顯示,N2 的激發源於抑制控制相關區域,意即右側額下迴、前運動皮質區和初級運動皮質區。關於部分反應的結果,LRP 和錯誤相關負性(ERN)成分波則與錯誤校正過程相關,而 N2 成分波可能表明抑制和錯誤校正功能之間的重疊。
希爾伯特-黃轉換的頻譜分析結果揭示,相較於繼續進行條件(Cont_Go),成功停止的試驗(SST)中具有更高的beta(14-28 Hz)和low gamma(28-56 Hz)頻率活動,這可能作為抑制控制的電生理指標。此外,與「繼續進行」條件相比,在完全不成功停止的試驗 (unsuccessful stop trials, USST)中觀察到更高的theta(3.5-7 Hz)和 alpha(7-14 Hz)活動,並且可能反應了錯誤處理歷程。最後,在動作反應開始前大約 100 毫秒,相較於完全不成功停止試驗,在部分不成功停止的試驗中觀察到更高的 theta 和 alpha 帶活動,這可能反應了錯誤的早期檢測和相應的校正過程。
全息-希爾伯特頻譜分析(HHSA)結果顯示,theta/beta、alpha/beta、theta/low gamma 和 alpha/low gamma的交叉頻率耦合可作為抑制控制的電生理指標。此外,delta (0.45-1.8 Hz)/delta(1.8-3.7 Hz;delta(0.45-3.7 Hz)/theta;delta、theta/alpha調控也被發現與錯誤檢測有關。最後,在反應開始前大約 100 毫秒,部分不成功停止比完全不成功停止試驗觀察到更高的delta(0.9-3.7 Hz)/theta 調控,這可能反應了錯誤的早期檢測和相應的校正過程。
總而言之,本研究透過引入力量反應、力量反應率和電生理數據,開發了可靠和客觀的動作抑制指標,幫助我們對動態動作抑制和錯誤校正的機制,取得更深入的認識。
摘要(英) Response inhibition has been widely explored using the stop-signal paradigm in a laboratory setting. However, the mechanisms differentiating attentional capture and motor inhibition processes is still unclear. Thus, in the present study, a modified stop signal task with the newly-added ‘continue go’ condition was adopted to investigate inhibitory control processes. Additionally, a grip force device, which provided a gradient and fine estimate of the inhibitory process (e.g. partially versus fully inhibited motor responses), was innovatively used to measure behavior which was obtained in conjunction with electroencephalographic (EEG) recordings. Instead of conventional indices such as reaction time and accuracy, the measurement of partial responses, as well as additional indices such force and force rate, was used to gauge the participants’ behavioral responses during motor inhibition. EEG data analysis employed advanced techniques, namely: Event-related mode (ERM), Hilbert–Huang transform (HHT), Holo-Hilbert Spectrum Analysis (HHSA) which are designated for non-linear and non-stationary brain signal analysis, to elucidate the electrophysiological correlates of the dynamic inhibition processes
The results illustrate that the non-canceled force and force rate increased as a function of stop signal delay, offering new objective indices for gauging the dynamic inhibitory process. Motor response (time and force) was a function of delay in the presentation of novel/infrequent stimuli. A larger lateralized readiness potential (LRP) amplitude in go and novel stimuli indicated an influence of the novel stimuli on central motor processing. Moreover, an early N1 component reflects an index of motor inhibition in addition to the N2 component reported in previous studies. Source analysis revealed that the activation of N2 originated from inhibitory control associated areas: the right inferior frontal gyrus, pre-motor cortex and primary motor cortex. Regarding partial responses, LRP and error-related negativity (ERN) components were associated with error correction processes, whereas the N2 component may indicate the functional overlap between inhibition and error correction.
The HHT results demonstrated higher beta (14-28Hz) and low gamma (28-56Hz) activity bands in the successful stop trials (SST) relative to continue go trials (Cont_Go) and this might serve as an electrophysiological index of inhibitory control. Furthermore, higher theta (3.5-7Hz) and alpha (7-14Hz) bands of activity were observed in full unsuccessful stop trials (USST) compared to the Cont_Go trials and might mirror error processing. Finally, higher theta and alpha band activity were observed in partial USST over full USST stop trials about 100ms before the response onset and this may reflect the early detection of errors and a corresponding correction process.
The HHSA results showed that theta/beta, alpha/beta, theta/low gamma and alpha/low gamma modulation may serve as an electrophysiological index of inhibitory control in the level of cross frequency couplings. Moreover, delta (0.45-1.8 Hz)/ delta (1.8-3.7 Hz); delta (0.45-3.7 Hz)/theta; delta, theta/alpha modulations was also found to be associated with error detection. Finally, higher delta (0.9-3.7 Hz)/ theta modulation were observed in partial USST over full USST stop trials about 100ms before the response onset and this may reflect the early detection of errors and a corresponding correction process.
In sum, the present study has developed reliable and objective indices of motor inhibition by introducing force, force rate and electrophysiological measures, further elucidating our understandings of dynamic motor inhibition and error correction.
關鍵字(中) ★ 抑制控制
★ 錯誤校正
★ 錯誤監控
★ 力量
★ 部分反應
★ 事件相關模式(ERM)
★ 希爾伯特-黃轉換(HHT)
★ 全息-希爾伯特頻譜分析(HHSA)
關鍵字(英) ★ inhibitory control
★ error correction
★ error monitoring
★ force
★ partial response
★ ERM
★ LRP
★ Hilbert–Huang transform
★ Holo-Hilbert Spectrum Analysis
論文目次 中文摘要 i
Abstract iii
Acknowledgments v
Table of Content vi
Table of figures ix
List of Tables xi
List of Abbreviations xii
Chapter 1: General introduction 1
1.1 Inhibitory control 1
1.2 Measurement of inhibitory control 1
1.2.1 Inhibitory control tasks 1
1.2.2 Modeling response inhibition - Horse Race Model 3
1.3 Electroencephalography and neural oscillations 6
1.3.1 Event-related potential (ERP) – Event-related mode (ERM) 6
1.3.2 Neural oscillations 7
1.4 Purpose and hypothesis 12
Chapter 2: To go or not to go: degrees of dynamic inhibitory control revealed by the function of grip force and early electrophysiological indices 15
2.1 Introduction 15
2.2 Materials and Methods 19
2.2.1 Participants 19
2.2.2 Apparatus and stimulus 19
2.2.3 Electroencephalography recording 24
2.2.4 Data analysis 24
2.3 Results 30
2.3.1 Behavioral results 30
2.3.2 Event Related Mode (ERM) 38
2.3.3 Error-related negativity (ERN) results 43
2.3.4 Source localization of ERM 44
2.3.5 LRP results 45
2.4 Discussion 49
2.4.1 New behavioral measures of motor inhibitory control 50
2.4.2 Modulation of reaction time and force rate for the novel/infrequent stimuli 51
2.4.3 The electrophysiological characteristics of Stop and Continue Go 52
2.4.4 Effect of novel/infrequent stimuli on central processing 54
2.4.5 Differential characteristics of full and partial USST 54
2.4.6 The temporal processes of inhibitory control 58
Chapter 3: Dynamical EEG indices of progressive motor inhibition and error-monitoring 59
3.1 Introduction 59
3.2 Materials and Methods 61
3.2.1 Participants 61
3.2.2 Apparatus and stimulus 61
3.2.3 Electroencephalography recording 61
3.2.4 Data analysis 61
3.3 Results 63
3.3.1 Behavior results 63
3.3.2 HHT results 63
3.4 Discussion 70
3.4.1 Neural mechanisms of motor inhibitory control 71
3.4.2 Neural mechanisms of error detection and correction 74
Chapter 4: Nonlinear and nonstationary perspectives of motor inhibition and error-monitoring as revealed by Holo-Hilbert Spectrum Analysis 76
4.1 Introduction 76
4.2 Materials and Methods 77
4.2.1 Participants 77
4.2.2 Apparatus and stimulus 78
4.2.3 Electroencephalography recording 78
4.2.4 Data analysis 78
4.3 HHSA Results 79
4.3.1 Inhibitory control 79
4.2.2 Error detection and error correction 82
4.4 Discussion 89
4.4.1 Inhibitory control 89
4.4.2 Error detection and error correction 90
Chapter 5: General discussion 92
5.1 Results summary 92
5.2 Conclusion 93
References 95
Appendixes 108
參考文獻 Al-Subari, K., Al-Baddai, S., Tomé, A.M., Volberg, G., Hammwöhner, R., and Lang, E.W. (2015). Ensemble empirical mode decomposition analysis of EEG data collected during a contour integration task. PLOS ONE 10(4), e0119489. doi: 10.1371/journal.pone.0119489.
Armstrong, I.T., and Munoz, D.P. (2003). Inhibitory control of eye movements during oculomotor countermanding in adults with attention-deficit hyperactivity disorder. Exp Brain Res 152(4), 444-452. doi: 10.1007/s00221-003-1569-3.
Aron, A.R. (2007). The Neural Basis of Inhibition in Cognitive Control. The Neuroscientist 13(3), 214-228. doi: 10.1177/1073858407299288.
Aron, A.R. (2011). From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiatry 69(12), e55-68. doi: 10.1016/j.biopsych.2010.07.024.
Aron, A.R., Fletcher, P.C., Bullmore, E.T., Sahakian, B.J., and Robbins, T.W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience 6(2), 115-116. doi: 10.1038/nn1003.
Aron, A.R., and Poldrack, R.A. (2006). Cortical and Subcortical Contributions to Stop Signal Response Inhibition: Role of the Subthalamic Nucleus. The Journal of Neuroscience 26(9), 2424-2433. doi: 10.1523/jneurosci.4682-05.2006.
Aron, A.R., Robbins, T.W., and Poldrack, R.A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences 8(4), 170-177. doi: 10.1016/j.tics.2004.02.010.
Aron, A.R., Robbins, T.W., and Poldrack, R.A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends in Cognitive Sciences 18(4), 177-185. doi: https://doi.org/10.1016/j.tics.2013.12.003.
Baddeley, A. (1998). The central executive: a concept and some misconceptions. J Int Neuropsychol Soc 4(5), 523-526. doi: 10.1017/s135561779800513x.
Band, G.P.H., van der Molen, M.W., and Logan, G.D. (2003). Horse-race model simulations of the stop-signal procedure. Acta Psychologica 112(2), 105-142. doi: https://doi.org/10.1016/S0001-6918(02)00079-3.
Bari, A., and Robbins, T.W. (2013). Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol 108, 44-79. doi: 10.1016/j.pneurobio.2013.06.005.
Bekker, E.M., Kenemans, J.L., Hoeksma, M.R., Talsma, D., and Verbaten, M.N. (2005). The pure electrophysiology of stopping. International Journal of Psychophysiology 55(2), 191-198. doi: 10.1016/j.ijpsycho.2004.07.005.
Benedek, M., Bergner, S., Könen, T., Fink, A., and Neubauer, A.C. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia 49(12), 3505-3511. doi: https://doi.org/10.1016/j.neuropsychologia.2011.09.004.
Benis, D., David, O., Lachaux, J.P., Seigneuret, E., Krack, P., Fraix, V., et al. (2014). Subthalamic nucleus activity dissociates proactive and reactive inhibition in patients with Parkinson′s disease. NeuroImage 91, 273-281. doi: https://doi.org/10.1016/j.neuroimage.2013.10.070.
Bieser, A., and Müller-Preuss, P. (1996). Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds. Experimental Brain Research 108(2), 273-284. doi: 10.1007/BF00228100.
Bissett, P.G., and Logan, G.D. (2014). Selective stopping? Maybe not. J Exp Psychol Gen 143(1), 455-472. doi: 10.1037/a0032122.
Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S., and Cohen, J.D. (2001). Conflict monitoring and cognitive control. Psychological review 108(3), 624.
Botvinick, M.M., Cohen, J.D., and Carter, C.S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences 8(12), 539-546. doi: 10.1016/j.tics.2004.10.003.
Boucher, L., Stuphorn, V., Logan, G.D., Schall, J.D., and Palmeri, T.J. (2007). Stopping eye and hand movements: are the processes independent? Percept Psychophys 69(5), 785-801.
Brainard, D.H. (1997). The psychophysics toolbox. Spatial vision 10, 433-436.
Burle, B., Spieser, L., Roger, C., Casini, L., Hasbroucq, T., and Vidal, F. (2015). Spatial and temporal resolutions of EEG: Is it really black and white? A scalp current density view. International Journal of Psychophysiology 97(3), 210-220. doi: https://doi.org/10.1016/j.ijpsycho.2015.05.004.
Buzsáki, G. (2006). Rhythms of the brain. New York, NY, US: Oxford University Press.
Buzsáki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science 304(5679), 1926-1929. doi: 10.1126/science.1099745.
Buzsáki, G., and Mizuseki, K. (2014). The log-dynamic brain: how skewed distributions affect network operations. Nature Reviews Neuroscience 15(4), 264-278. doi: 10.1038/nrn3687.
Canolty, R.T., Edwards, E., Dalal, S.S., Soltani, M., Nagarajan, S.S., Kirsch, H.E., et al. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science (New York, N.Y.) 313(5793), 1626-1628. doi: 10.1126/science.1128115.
Canolty, R.T., and Knight, R.T. (2010). The functional role of cross-frequency coupling. Trends Cogn Sci 14(11), 506-515. doi: 10.1016/j.tics.2010.09.001.
Carbonnell, L., and Falkenstein, M. (2006). Does the error negativity reflect the degree of response conflict? Brain research 1095(1), 124-130.
Carter, C.S., Braver, T.S., Barch, D.M., Botvinick, M.M., Noll, D., and Cohen, J.D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280(5364), 747-749.
Cavanagh, J.F., Cohen, M.X., and Allen, J.J.B. (2009). Prelude to and Resolution of an Error: EEG Phase Synchrony Reveals Cognitive Control Dynamics during Action Monitoring. The Journal of Neuroscience 29(1), 98-105. doi: 10.1523/jneurosci.4137-08.2009.
Cavanagh, J.F., and Frank, M.J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences 18(8), 414-421. doi: https://doi.org/10.1016/j.tics.2014.04.012.
Cavanagh, J.F., and Shackman, A.J. (2015). Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. Journal of Physiology-Paris 109(1), 3-15. doi: https://doi.org/10.1016/j.jphysparis.2014.04.003.
Cavanagh, J.F., Zambrano-Vazquez, L., and Allen, J.J.B. (2012). Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology 49(2), 220-238. doi: https://doi.org/10.1111/j.1469-8986.2011.01293.x.
Chang, C.F., Liang, W.K., Lai, C.L., Hung, D.L., and Juan, C.H. (2016). Theta Oscillation Reveals the Temporal Involvement of Different Attentional Networks in Contingent Reorienting. Frontiers in human neuroscience 10, 264-264. doi: 10.3389/fnhum.2016.00264.
Chen, C.Y., Muggleton, N.G., Juan, C.H., Tzeng, O.J., and Hung, D.L. (2008). Time pressure leads to inhibitory control deficits in impulsive violent offenders. Behav Brain Res 187(2), 483-488. doi: 10.1016/j.bbr.2007.10.011.
Chen, C.Y., Muggleton, N.G., Tzeng, O.J., Hung, D.L., and Juan, C.H. (2009). Control of prepotent responses by the superior medial frontal cortex. Neuroimage 44(2), 537-545. doi: 10.1016/j.neuroimage.2008.09.005.
Chuang, K.Y., Chen, Y.H., Balachandran, P., Liang, W.K., and Juan, C.H. (2019). Revealing the electrophysiological correlates of working memory-load effects in symmetry span task with HHT method. Frontiers in psychology 10.
Clarke, S.E., Longtin, A., and Maler, L. (2015). Contrast coding in the electrosensory system: parallels with visual computation. Nat Rev Neurosci 16(12), 733-744. doi: 10.1038/nrn4037.
Cohen, M.X. (2011). Error-related medial frontal theta activity predicts cingulate-related structural connectivity. NeuroImage 55(3), 1373-1383. doi: https://doi.org/10.1016/j.neuroimage.2010.12.072.
Cohen, M.X. (2014). A neural microcircuit for cognitive conflict detection and signaling. Trends in Neurosciences 37(9), 480-490. doi: https://doi.org/10.1016/j.tins.2014.06.004.
Cohen, M.X. (2015). Comparison of different spatial transformations applied to EEG data: A case study of error processing. International Journal of Psychophysiology 97(3), 245-257. doi: https://doi.org/10.1016/j.ijpsycho.2014.09.013.
Cohen, M.X., and van Gaal, S. (2012). Dynamic interactions between large-scale brain networks predict behavioral adaptation after perceptual errors. Cerebral Cortex 23(5), 1061-1072. doi: 10.1093/cercor/bhs069.
Cole, S.R., and Voytek, B. (2017). Brain Oscillations and the Importance of Waveform Shape. Trends Cogn Sci 21(2), 137-149. doi: 10.1016/j.tics.2016.12.008.
Cooper, P.S., Darriba, Á., Karayanidis, F., and Barceló, F. (2016). Contextually sensitive power changes across multiple frequency bands underpin cognitive control. NeuroImage 132, 499-511. doi: https://doi.org/10.1016/j.neuroimage.2016.03.010.
Coxon, J.P., Stinear, C.M., and Byblow, W.D. (2006). Intracortical inhibition during volitional inhibition of prepared action. J Neurophysiol 95(6), 3371-3383. doi: 10.1152/jn.01334.2005.
Davies, P.L., Segalowitz, S.J., and Gavin, W.J. (2004). Development of response-monitoring ERPs in 7-to 25-year-olds. Developmental neuropsychology 25(3), 355-376.
De Jong, R., Coles, M.G.H., Logan, G.D., and Gratton, G. (1990). In search of the point of no return: the control of response processes. Journal of Experimental Psychology: Human Perception and Performance 16(1), 164-182. doi: 10.1037/0096-1523.16.1.164.
Dimoska, A., Johnstone, S.J., and Barry, R.J. (2006). The auditory-evoked N2 and P3 components in the stop-signal task: Indices of inhibition, response-conflict or error-detection? Brain and Cognition 62(2), 98-112. doi: 10.1016/j.bandc.2006.03.011.
Donders, F.C. (1969). On the speed of mental processes. Acta Psychologica 30, 412-431. doi: https://doi.org/10.1016/0001-6918(69)90065-1.
Donkers, F.C.L., and van Boxtel, G.J.M. (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition 56(2), 165-176. doi: 10.1016/j.bandc.2004.04.005.
Duann, J.R., Ide, J.S., Luo, X., and Li, C.S.R. (2009). Functional Connectivity Delineates Distinct Roles of the Inferior Frontal Cortex and Presupplementary Motor Area in Stop Signal Inhibition. The Journal of Neuroscience 29(32), 10171-10179. doi: 10.1523/jneurosci.1300-09.2009.
Eichele, H., Juvodden, H.T., Ullsperger, M., and Eichele, T. (2010). Mal-adaptation of event-related EEG responses preceding performance errors. Front Hum Neurosci 4. doi: 10.3389/fnhum.2010.00065.
Engel, A.K., and Fries, P. (2010). Beta-band oscillations—signalling the status quo? Current Opinion in Neurobiology 20(2), 156-165. doi: https://doi.org/10.1016/j.conb.2010.02.015.
Enriquez-Geppert, S., Konrad, C., Pantev, C., and Huster, R.J. (2010). Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task. NeuroImage 51(2), 877-887. doi: 10.1016/j.neuroimage.2010.02.043.
Eriksen, C.W., and Schultz, D.W. (1979). Information processing in visual search: A continuous flow conception and experimental results. Perception & Psychophysics 25(4), 249-263. doi: 10.3758/BF03198804.
Fiehler, K., Ullsperger, M., and von Cramon, D.Y. (2005). Electrophysiological correlates of error correction. Psychophysiology 42(1), 72-82. doi: 10.1111/j.1469-8986.2005.00265.x.
Filipovic, S.R., Jahanshahi, M., and Rothwell, J.C. (2000). Cortical potentials related to the nogo decision. Exp Brain Res 132(3), 411-415. doi: 10.1007/s002210000349.
Flandrin, P., Rilling, G., and Goncalves, P. (2004). Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters 11(2), 112-114. doi: 10.1109/LSP.2003.821662.
Floden, D., and Stuss, D.T. (2006). Inhibitory control is slowed in patients with right superior medial frontal damage. Journal of cognitive neuroscience 18(11), 1843-1849.
Freeman, W.J. (2004a). Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude. Clin Neurophysiol 115(9), 2077-2088. doi: 10.1016/j.clinph.2004.02.029.
Freeman, W.J. (2004b). Origin, structure, and role of background EEG activity. Part 2. Analytic phase. Clin Neurophysiol 115(9), 2089-2107. doi: 10.1016/j.clinph.2004.02.028.
Freeman, W.J. (2005). Origin, structure, and role of background EEG activity. Part 3. Neural frame classification. Clin Neurophysiol 116(5), 1118-1129. doi: 10.1016/j.clinph.2004.12.023.
Freeman, W.J., and Vitiello, G. (2006). Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Physics of Life Reviews 3(2), 93-118. doi: https://doi.org/10.1016/j.plrev.2006.02.001.
Gehring, W.J., Goss, B., Coles, M.G., Meyer, D.E., and Donchin, E. (1993). A neural system for error detection and compensation. Psychological science 4(6), 385-390.
Gilbertson, T., Lalo, E., Doyle, L., Di Lazzaro, V., Cioni, B., and Brown, P. (2005). Existing motor state is favored at the expense of new movement during 13-35 hz oscillatory synchrony in the human corticospinal system. The Journal of Neuroscience 25(34), 7771-7779. doi: 10.1523/jneurosci.1762-05.2005.
González-Villar, A.J., Bonilla, F.M., and Carrillo-de-la-Peña, M.T. (2016). When the brain simulates stopping: Neural activity recorded during real and imagined stop-signal tasks. Cognitive, Affective, & Behavioral Neuroscience 16(5), 825-835. doi: 10.3758/s13415-016-0434-3.
Hampshire, A., Highfield, Roger R., Parkin, Beth L., and Owen, Adrian M. (2012). Fractionating Human Intelligence. Neuron 76(6), 1225-1237. doi: https://doi.org/10.1016/j.neuron.2012.06.022.
Hampshire, A., and Sharp, D. (2015). Inferior PFC Subregions Have Broad Cognitive Roles. Trends in Cognitive Sciences 19(12), 712-713. doi: https://doi.org/10.1016/j.tics.2015.09.010.
Heusser, A.C., Poeppel, D., Ezzyat, Y., and Davachi, L. (2016). Episodic sequence memory is supported by a theta-gamma phase code. Nat Neurosci 19(10), 1374-1380. doi: 10.1038/nn.4374.
Hoffmann, S., and Falkenstein, M. (2010). Independent component analysis of erroneous and correct responses suggests online response control. Hum Brain Mapp 31(9), 1305-1315. doi: 10.1002/hbm.20937.
Holmes, C.J., Hoge, R., Collins, L., Woods, R., Toga, A.W., and Evans, A.C. (1998). Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22(2), 324-333. doi: 10.1097/00004728-199803000-00032.
Hong, X., Wang, Y., Sun, J., Li, C., and Tong, S. (2017). Segregating Top-Down Selective Attention from Response Inhibition in a Spatial Cueing Go/NoGo Task: An ERP and Source Localization Study. Scientific Reports 7(1), 9662. doi: 10.1038/s41598-017-08807-z.
Hsu, C.H., Lee, C.Y., and Liang, W.K. (2016). An improved method for measuring mismatch negativity using ensemble empirical mode decomposition. Journal of Neuroscience Methods 264, 78-85. doi: 10.1016/j.jneumeth.2016.02.015.
Hsu, T.Y., Tseng, L.Y., Yu, J.X., Kuo, W.J., Hung, D.L., Tzeng, O.J.L., et al. (2011). Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. NeuroImage 56(4), 2249-2257. doi: 10.1016/j.neuroimage.2011.03.059.
Huang, N.E., Hu, K., Yang, A.C.C., Chang, H.-C., Jia, D., Liang, W.-K., et al. (2016). On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374(2065), 20150206. doi: doi:10.1098/rsta.2015.0206.
Huang, N.E., Long, S.R., and Shen, Z. (1996). "The mechanism for frequency downshift in nonlinear wave evolution," in Advances in Applied Mechanics, eds. J.W. Hutchinson & T.Y. Wu. Elsevier), 59-117C.
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., et al. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454(1971), 903-995. doi: doi:10.1098/rspa.1998.0193.
Huang, N.E., and Wu, Z. (2008). A review on Hilbert‐Huang transform: Method and its applications to geophysical studies. Reviews of geophysics 46(2).
Huang, N.E., Wu, Z., Long, S.R., Arnold, K.C., Chen, X., and Blank, K. (2009). On instantaneous frequency. Advances in Adaptive Data Analysis 01(02), 177-229. doi: 10.1142/s1793536909000096.
Huster, R.J., Enriquez-Geppert, S., Lavallee, C.F., Falkenstein, M., and Herrmann, C.S. (2013). Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. International Journal of Psychophysiology 87(3), 217-233. doi: 10.1016/j.ijpsycho.2012.08.001.
Hyafil, A., Giraud, A.L., Fontolan, L., and Gutkin, B. (2015). Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions. Trends Neurosci 38(11), 725-740. doi: 10.1016/j.tins.2015.09.001.
Jaiswal, S., Tsai, S.-Y., Juan, C.-H., Muggleton, N.G., and Liang, W.-K. (2019). Low delta and high alpha power are associated with better conflict control and working memory in high mindfulness, low anxiety individuals. Social Cognitive and Affective Neuroscience 14(6), 645-655. doi: 10.1093/scan/nsz038.
Jensen, O., and Colgin, L.L. (2007). Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 11(7), 267-269. doi: 10.1016/j.tics.2007.05.003.
Jensen, O., Goel, P., Kopell, N., Pohja, M., Hari, R., and Ermentrout, B. (2005). On the human sensorimotor-cortex beta rhythm: sources and modeling. Neuroimage 26(2), 347-355. doi: 10.1016/j.neuroimage.2005.02.008.
Jensen, O., and Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4, 186. doi: 10.3389/fnhum.2010.00186.
Jensen, O., Spaak, E., and Park, H. (2016). Discriminating Valid from Spurious Indices of Phase-Amplitude Coupling. eNeuro 3(6). doi: 10.1523/eneuro.0334-16.2016.
Joundi, R.A., Jenkinson, N., Brittain, J.S., Aziz, T.Z., and Brown, P. (2012). Driving oscillatory activity in the human cortex enhances motor performance. Current Biology 22(5), 403-407. doi: 10.1016/j.cub.2012.01.024.
Juan, C.H., and Muggleton, N.G. (2012). Brain stimulation and inhibitory control. Brain Stimulation 5(2), 63-69. doi: 10.1016/j.brs.2012.03.012.
Kaiser, J., Simon, N.A., Sauseng, P., and Schütz-Bosbach, S. (2019). Midfrontal neural dynamics distinguish between general control and inhibition-specific processes in the stopping of motor actions. Scientific Reports 9(1), 13054. doi: 10.1038/s41598-019-49476-4.
Ko, Y.T., Alsford, T., and Miller, J. (2012). Inhibitory effects on response force in the stop-signal paradigm. Journal of Experimental Psychology: Human Perception and Performance 38(2), 465-477. doi: 10.1037/a0027034.
Kok, A., Ramautar, J.R., De Ruiter, M.B., Band, G.P.H., and Ridderinkhof, K.R. (2004). ERP components associated with successful and unsuccessful stopping in a stop-signal task. Psychophysiology 41(1), 9-20. doi: 10.1046/j.1469-8986.2003.00127.x.
Kolev, V., Beste, C., Falkenstein, M., and Yordanova, J. (2009). Error-related oscillations: Effects of aging on neural systems for behavioral monitoring. Journal of Psychophysiology 23(4), 216-223. doi: 10.1027/0269-8803.23.4.216.
Lee, H.W., Lu, M.S., Chen, C.Y., Muggleton, N.G., Hsu, T.Y., and Juan, C.H. (2016). Roles of the pre-SMA and rIFG in conditional stopping revealed by transcranial magnetic stimulation. Behavioural Brain Research 296, 459-467. doi: 10.1016/j.bbr.2015.08.024.
Lega, B., Burke, J., Jacobs, J., and Kahana, M.J. (2016). Slow-Theta-to-Gamma Phase-Amplitude Coupling in Human Hippocampus Supports the Formation of New Episodic Memories. Cereb Cortex 26(1), 268-278. doi: 10.1093/cercor/bhu232.
Li, C.S.R., Chang, H.L., Hsu, Y.P., Wang, H.S., and Ko, N.C. (2006). Motor Response Inhibition in Children With Tourette′s Disorder. The Journal of Neuropsychiatry and Clinical Neurosciences 18(3), 417-419. doi: 10.1176/jnp.2006.18.3.417.
Liang, W.-K., Lo, M.-T., Yang, A.C., Peng, C.-K., Cheng, S.-K., Tseng, P., et al. (2014). Revealing the brain′s adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy. NeuroImage 90, 218-234. doi: https://doi.org/10.1016/j.neuroimage.2013.12.048.
Lo, Y.-H., Liang, W.-K., Lee, H.-W., Wang, C.-H., Tzeng, O.J.L., Hung, D.L., et al. (2013). The Neural Development of Response Inhibition in 5- and 6-Year-Old Preschoolers: An ERP and EEG Study. Developmental Neuropsychology 38(5), 301-316. doi: 10.1080/87565641.2013.801980.
Logan, G.D. (1994). "On the ability to inhibit thought and action: A users′ guide to the stop signal paradigm," in Inhibitory processes in attention, memory, and language. (San Diego, CA, US: Academic Press), 189-239.
Logan, G.D., and Cowan, W.B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review 91(3), 295-327. doi: 10.1037/0033-295X.91.3.295.
Logan, G.D., Van Zandt, T., Verbruggen, F., and Wagenmakers, E.-J. (2014). On the ability to inhibit thought and action: General and special theories of an act of control. Psychological Review 121(1), 66-95. doi: 10.1037/a0035230.
Logue, S.F., and Gould, T.J. (2014). The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition. Pharmacology, biochemistry, and behavior 123, 45-54. doi: 10.1016/j.pbb.2013.08.007.
Luu, P., Tucker, D.M., and Makeig, S. (2004). Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clinical Neurophysiology 115(8), 1821-1835. doi: https://doi.org/10.1016/j.clinph.2004.03.031.
Mancini, C., Modugno, N., Santilli, M., Pavone, L., Grillea, G., Morace, R., et al. (2019). Unilateral Stimulation of Subthalamic Nucleus Does Not Affect Inhibitory Control. Frontiers in Neurology 9(1149). doi: 10.3389/fneur.2018.01149.
Manza, P., Amandola, M., Tatineni, V., Li, C.-S.R., and Leung, H.-C. (2017). Response inhibition in Parkinson′s disease: a meta-analysis of dopaminergic medication and disease duration effects. NPJ Parkinson′s disease 3, 23-23. doi: 10.1038/s41531-017-0024-2.
Maris, E., and Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods 164(1), 177-190. doi: https://doi.org/10.1016/j.jneumeth.2007.03.024.
Marshall, L., Kirov, R., Brade, J., Mölle, M., and Born, J. (2011). Transcranial Electrical Currents to Probe EEG Brain Rhythms and Memory Consolidation during Sleep in Humans. PLOS ONE 6(2), e16905. doi: 10.1371/journal.pone.0016905.
Mattia, M., Pani, P., Mirabella, G., Costa, S., Del Giudice, P., and Ferraina, S. (2013). Heterogeneous Attractor Cell Assemblies for Motor Planning in Premotor Cortex. The Journal of Neuroscience 33(27), 11155-11168. doi: 10.1523/jneurosci.4664-12.2013.
Mattia, M., Spadacenta, S., Pavone, L., Quarato, P., Esposito, V., Sparano, A., et al. (2012). Stop-event-related potentials from intracranial electrodes reveal a key role of premotor and motor cortices in stopping ongoing movements. Frontiers in Neuroengineering 5(12). doi: 10.3389/fneng.2012.00012.
McGarry, T., and Franks, I.M. (1997). A horse race between independent processes: evidence for a phantom point of no return in preparation of a speeded motor response. J Exp Psychol Hum Percept Perform 23(5), 1533-1542.
Mirabella, G., Iaconelli, S., Romanelli, P., Modugno, N., Lena, F., Manfredi, M., et al. (2012). Deep Brain Stimulation of Subthalamic Nuclei Affects Arm Response Inhibition In Parkinson’s Patients. Cerebral Cortex 22(5), 1124-1132. doi: 10.1093/cercor/bhr187.
Mirabella, G., Pani, P., and Ferraina, S. (2011). Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. Journal of Neurophysiology 106(3), 1454-1466. doi: 10.1152/jn.00995.2010.
Nachev, P., Wydell, H., O′Neill, K., Husain, M., and Kennard, C. (2007). The role of the pre-supplementary motor area in the control of action. Neuroimage 36 Suppl 2(3-3), T155-163. doi: 10.1016/j.neuroimage.2007.03.034.
Neubert, F.X., Mars, R., and Rushworth, M. (2013). "Is there an inferior frontal cortical network for cognitive control and inhibition," in Principles of Frontal Lobe Function, ed. D.T. Stuss, Knight, Robert T. Oxford University Press), 332-352.
Nguyen, T.V., Balachandran, P., Muggleton, N.G., Liang, W.K., and Juan, C.H. (2021a). Dynamical EEG Indices of Progressive Motor Inhibition and Error-Monitoring. Brain Sciences 11(4), 478.
Nguyen, T.V., Hsu, C.Y., Jaiswal, S., Muggleton, N.G., Liang, W.K., and Juan, C.H. (2021b). To Go or Not to Go: Degrees of Dynamic Inhibitory Control Revealed by the Function of Grip Force and Early Electrophysiological Indices. Frontiers in Human Neuroscience 15(6). doi: 10.3389/fnhum.2021.614978.
Nieuwenhuis, S., Yeung, N., van den Wildenberg, W., and Ridderinkhof, K.R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience 3(1), 17-26. doi: 10.3758/cabn.3.1.17.
Obeso, I., Wilkinson, L., Casabona, E., Speekenbrink, M., Luisa Bringas, M., Alvarez, M., et al. (2014). The subthalamic nucleus and inhibitory control: impact of subthalamotomy in Parkinson′s disease. Brain 137(Pt 5), 1470-1480. doi: 10.1093/brain/awu058.
Ostrovsky, L.A., and Potapov, A.I. (1999). Modulated waves: theory and applications. JHU Press.
Palva, J.M., Palva, S., and Kaila, K. (2005). Phase synchrony among neuronal oscillations in the human cortex. J Neurosci 25(15), 3962-3972. doi: 10.1523/jneurosci.4250-04.2005.
Pavone, E.F., Tieri, G., Rizza, G., Tidoni, E., Grisoni, L., and Aglioti, S.M. (2016). Embodying others in immersive virtual reality: electro-cortical signatures of monitoring the errors in the actions of an avatar seen from a first-person perspective. The Journal of Neuroscience 36(2), 268-279. doi: 10.1523/jneurosci.0494-15.2016.
Pelli, D.G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial vision 10, 437-442.
Pogosyan, A., Gaynor, L.D., Eusebio, A., and Brown, P. (2009). Boosting cortical activity at beta-band frequencies slows movement in humans. Current Biology 19(19), 1637-1641. doi: https://doi.org/10.1016/j.cub.2009.07.074.
Rabbitt, P.M. (1966). Errors and error correction in choice-response tasks. J Exp Psychol 71(2), 264-272. doi: 10.1037/h0022853.
Rae, C.L., Hughes, L.E., Anderson, M.C., and Rowe, J.B. (2015). The Prefrontal Cortex Achieves Inhibitory Control by Facilitating Subcortical Motor Pathway Connectivity. The Journal of Neuroscience 35(2), 786-794. doi: 10.1523/jneurosci.3093-13.2015.
Ramautar, J.R., Kok, A., and Ridderinkhof, K.R. (2004). Effects of stop-signal probability in the stop-signal paradigm: The N2/P3 complex further validated. Brain and Cognition 56(2), 234-252. doi: 10.1016/j.bandc.2004.07.002.
Ramautar, J.R., Kok, A., and Ridderinkhof, K.R. (2006). Effects of stop-signal modality on the N2/P3 complex elicited in the stop-signal paradigm. Biological Psychology 72(1), 96-109. doi: 10.1016/j.biopsycho.2005.08.001.
Roche, R., Garavan, H., Foxe, J., and O′Mara, S. (2005). Individual differences discriminate event-related potentials but not performance during response inhibition.
Roux, F., and Uhlhaas, P.J. (2014). Working memory and neural oscillations: α-γ versus θ-γ codes for distinct WM information? Trends Cogn Sci 18(1), 16-25. doi: 10.1016/j.tics.2013.10.010.
Rubia, K., Smith, A.B., Brammer, M.J., and Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage 20(1), 351-358. doi: https://doi.org/10.1016/S1053-8119(03)00275-1.
Rushworth, M.F., Hadland, K.A., Paus, T., and Sipila, P.K. (2002). Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. J Neurophysiol 87(5), 2577-2592. doi: 10.1152/jn.2002.87.5.2577.
Salinas, E., and Stanford, T.R. (2013). The Countermanding Task Revisited: Fast Stimulus Detection Is a Key Determinant of Psychophysical Performance. The Journal of Neuroscience 33(13), 5668-5685. doi: 10.1523/jneurosci.3977-12.2013.
Scangos, K.W., and Stuphorn, V. (2010). Medial frontal cortex motivates but does not control movement initiation in the countermanding task. J Neurosci 30(5), 1968-1982. doi: 10.1523/jneurosci.4509-09.2010.
Schachar, R.J., Chen, S., Logan, G.D., Ornstein, T.J., Crosbie, J., Ickowicz, A., et al. (2004). Evidence for an Error Monitoring Deficit in Attention Deficit Hyperactivity Disorder. Journal of Abnormal Child Psychology 32(3), 285-293. doi: 10.1023/B:JACP.0000026142.11217.f2.
Schall, J.D., Palmeri, T.J., and Logan, G.D. (2017). Models of inhibitory control. Philos Trans R Soc Lond B Biol Sci 372(1718). doi: 10.1098/rstb.2016.0193.
Sharp, D.J., Bonnelle, V., De Boissezon, X., Beckmann, C.F., James, S.G., Patel, M.C., et al. (2010). Distinct frontal systems for response inhibition, attentional capture, and error processing. Proceedings of the National Academy of Sciences 107(13), 6106-6111. doi: 10.1073/pnas.1000175107.
Shibata, T., Shimoyama, I., Ito, T., Abla, D., Iwasa, H., Koseki, K., et al. (1999). Event-related dynamics of the gamma-band oscillation in the human brain: information processing during a GO/NOGO hand movement task. Neuroscience Research 33(3), 215-222. doi: https://doi.org/10.1016/S0168-0102(99)00003-6.
Spronk, M., Jonkman, L., and Kemner, C. (2008). Response inhibition and attention processing in 5-to 7-year-old children with and without symptoms of ADHD: An ERP study. Clinical Neurophysiology 119(12), 2738-2752.
Stam, C.J. (2005). Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116(10), 2266-2301. doi: 10.1016/j.clinph.2005.06.011.
Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology 18(6), 643-662. doi: 10.1037/h0054651.
Stuss, D.T., and Alexander, M.P. (2000). Executive functions and the frontal lobes: a conceptual view. Psychol Res 63(3-4), 289-298. doi: 10.1007/s004269900007.
Swann, N., Cai, W., Conner, C.R., Pieters, T.A., Claffey, M.P., George, J.S., et al. (2012). Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: Electrophysiological responses and functional and structural connectivity. NeuroImage 59(3), 2860-2870. doi: https://doi.org/10.1016/j.neuroimage.2011.09.049.
Swann, N., Poizner, H., Houser, M., Gould, S., Greenhouse, I., Cai, W., et al. (2011). Deep Brain Stimulation of the Subthalamic Nucleus Alters the Cortical Profile of Response Inhibition in the Beta Frequency Band: A Scalp EEG Study in Parkinson′s Disease. The Journal of Neuroscience 31(15), 5721-5729. doi: 10.1523/jneurosci.6135-10.2011.
Swann, N., Tandon, N., Canolty, R., Ellmore, T.M., McEvoy, L.K., Dreyer, S., et al. (2009). Intracranial EEG Reveals a Time- and Frequency-Specific Role for the Right Inferior Frontal Gyrus and Primary Motor Cortex in Stopping Initiated Responses. The Journal of Neuroscience 29(40), 12675-12685. doi: 10.1523/jneurosci.3359-09.2009.
van Belle, J., Vink, M., Durston, S., and Zandbelt, B.B. (2014). Common and unique neural networks for proactive and reactive response inhibition revealed by independent component analysis of functional MRI data. NeuroImage 103, 65-74. doi: https://doi.org/10.1016/j.neuroimage.2014.09.014.
Van Boxtel, G.J., van der Molen, M.W., Jennings, J.R., and Brunia, C.H. (2001). A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm. Biological Psychology 58(3), 229-262. doi: 10.1016/S0301-0511(01)00117-X.
van de Laar, M.C., van den Wildenberg, W.P., van Boxtel, G.J., and van der Molen, M.W. (2010). Processing of global and selective stop signals: application of Donders′ subtraction method to stop-signal task performance. Exp Psychol 57(2), 149-159. doi: 10.1027/1618-3169/a000019.
van den Wildenberg, W.P.M., van Boxtel, G.J.M., van der Molen, M.W., Bosch, D.A., Speelman, J.D., and Brunia, C.H.M. (2006). Stimulation of the Subthalamic Region Facilitates the Selection and Inhibition of Motor Responses in Parkinson′s Disease. Journal of Cognitive Neuroscience 18(4), 626-636. doi: 10.1162/jocn.2006.18.4.626.
van der Wardt, V., Logan, P., Hood, V., Booth, V., Masud, T., and Harwood, R. (2015). The Association of Specific Executive Functions and Falls Risk in People with Mild Cognitive Impairment and Early-Stage Dementia. Dementia and Geriatric Cognitive Disorders 40(3-4), 178-185. doi: 10.1159/000433523.
van Driel, J., Ridderinkhof, K.R., and Cohen, M.X. (2012). Not all errors are alike: theta and alpha eeg dynamics relate to differences in error-processing dynamics. The Journal of Neuroscience 32(47), 16795-16806. doi: 10.1523/jneurosci.0802-12.2012.
Van Veen, B.D., Van Drongelen, W., Yuchtman, M., and Suzuki, A. (1997). Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on biomedical engineering 44(9), 867-880.
Verbruggen, F., and Logan, G.D. (2008). Response inhibition in the stop-signal paradigm. Trends Cogn Sci 12(11), 418-424. doi: 10.1016/j.tics.2008.07.005.
Verbruggen, F., and Logan, G.D. (2009). Models of response inhibition in the stop-signal and stop-change paradigms. Neurosci Biobehav Rev 33(5), 647-661. doi: 10.1016/j.neubiorev.2008.08.014.
Verbruggen, F., Logan, G.D., Liefooghe, B., and Vandierendonck, A. (2008). Short-term aftereffects of response inhibition: Repetition priming or between-trial control adjustments? Journal of Experimental Psychology: Human Perception and Performance 34(2), 413-426. doi: 10.1037/0096-1523.34.2.413.
Vidal, F., Burle, B., and Hasbroucq, T. (2020). Errors and action monitoring: errare humanum est sed corrigere possibile. Frontiers in Human Neuroscience 13(453). doi: 10.3389/fnhum.2019.00453.
Vogel, E.K., and Luck, S.J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology 37(2), 190-203.
Voloh, B., Valiante, T.A., Everling, S., and Womelsdorf, T. (2015). Theta–gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts. Proceedings of the National Academy of Sciences 112(27), 8457-8462. doi: 10.1073/pnas.1500438112.
Voytek, B., Canolty, R.T., Shestyuk, A., Crone, N.E., Parvizi, J., and Knight, R.T. (2010). Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Frontiers in human neuroscience 4, 191-191. doi: 10.3389/fnhum.2010.00191.
Wang, C.H., Chang, C.C., Liang, Y.M., Shih, C.M., Muggleton, N.G., and Juan, C.H. (2013). Temporal preparation in athletes: a comparison of tennis players and swimmers with sedentary controls. J Mot Behav 45(1), 55-63. doi: 10.1080/00222895.2012.740522.
Wang, G., Chen, X.Y., Qiao, F.L., Wu, Z., and Huang, N.E. (2010). On intrinsic mode function. Advances in Adaptive Data Analysis 2(03), 277-293.
Wessel, J.R., and Aron, A.R. (2017). On the globality of motor suppression: unexpected events and their influence on behavior and cognition. Neuron 93(2), 259-280.
Wiersema, J., Van der Meere, J., and Roeyers, H. (2005). ERP correlates of impaired error monitoring in children with ADHD. Journal of neural transmission 112(10), 1417-1430.
Williams, N., Nasuto, S.J., and Saddy, J.D. (2011). Evaluation of empirical mode decomposition for event-related potential Analysis. EURASIP Journal on Advances in Signal Processing 2011(1), 965237. doi: 10.1155/2011/965237.
Williams, N.J., Daly, I., Nasuto, S., Saddy, J., and Warwick, K. (2009). ERP classification using empirical mode decomposition.
Wu, Z., and Huang, N.E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis 01(01), 1-41. doi: 10.1142/s1793536909000047.
Wu, Z., Huang, N.E., and Chen, X. (2009). The multi-dimensional ensemble empirical mode decomposition method. Advances in Adaptive Data Analysis 01(03), 339-372. doi: 10.1142/s1793536909000187.
Wylie, S.A., Claassen, D.O., Kanoff, K.E., Ridderinkhof, K.R., and van den Wildenberg, W.P. (2013). Impaired inhibition of prepotent motor actions in patients with Tourette syndrome. J Psychiatry Neurosci 38(5), 349-356. doi: 10.1503/jpn.120138.
Xu, K.Z., Anderson, B.A., Emeric, E.E., Sali, A.W., Stuphorn, V., Yantis, S., et al. (2017). Neural Basis of Cognitive Control over Movement Inhibition: Human fMRI and Primate Electrophysiology Evidence. Neuron 96(6), 1447-1458.e1446. doi: https://doi.org/10.1016/j.neuron.2017.11.010.
Xue, G., Aron, A.R., and Poldrack, R.A. (2008). Common neural substrates for inhibition of spoken and manual responses. Cerebral Cortex 18(8), 1923-1932.
Yeung, N., Botvinick, M.M., and Cohen, J.D. (2004). The neural basis of error detection: conflict monitoring and the error-related negativity. Psychological Review 111(4), 931-959. doi: 10.1037/0033-295X.111.4.931.
Yu, J., Tseng, P., Hung, D.L., Wu, S.W., and Juan, C.H. (2015). Brain stimulation improves cognitive control by modulating medial‐frontal activity and preSMA‐vmPFC functional connectivity. Human brain mapping 36(10), 4004-4015.
Zandbelt, B.B., and Vink, M. (2010). On the Role of the Striatum in Response Inhibition. PLOS ONE 5(11), e13848. doi: 10.1371/journal.pone.0013848.
Zavala, B., Damera, S., Dong, J.W., Lungu, C., Brown, P., and Zaghloul, K.A. (2015). Human Subthalamic Nucleus Theta and Beta Oscillations Entrain Neuronal Firing During Sensorimotor Conflict. Cerebral Cortex 27(1), 496-508. doi: 10.1093/cercor/bhv244.
Zhang, Y., Chen, Y., Bressler, S.L., and Ding, M. (2008). Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience 156(1), 238-246. doi: 10.1016/j.neuroscience.2008.06.061.
Zhou, Y., and Baker, C. (1993). A processing stream in mammalian visual cortex neurons for non-Fourier responses. Science 261(5117), 98-101. doi: 10.1126/science.8316862.
指導教授 阮啟弘(Chi-Hung Juan) 審核日期 2021-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明