參考文獻 |
劉怡君(2008)。以語意促發作業探討項目指示遺忘中線索對於記憶登錄歷程影 響之行為及事件相關腦電位研究 [未出版之碩士論文]。國立中央大學認知 與神經科學研究所,桃園縣。 取自https://hdl.handle.net/11296/427482
Abla, D., Katahira, K., & Okanoya, K. (2008). On-line assessment of statistical learning by event-related potentials. Journal of Cognitive Neuroscience, 20(6), 952–964. https://doi.org/10.1162/jocn.2008.20058
Abla, D., & Okanoya, K. (2009). Visual statistical learning of shape sequences: An ERP study. Neuroscience Research, 64(2), 185–190. https://doi.org/10.1016/j.neures.2009.02.013
Baddeley, A., & Hitch, G. (1974). The social design of virtual worlds: constructing the user and community through code. Medical Research Council, 47–88.
Ball, F., Fuehrmann, F., Stratil, F., & Noesselt, T. (2018). Phasic and sustained interactions of multisensory interplay and temporal expectation. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-28495-7
Coderre, E. L., O’Donnell, E., O’Rourke, E., & Cohn, N. (2020). Predictability modulates neurocognitive semantic processing of non-verbal narratives. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-66814-z
Cohen, A., Ivry, R. I., & Keele, S. W. (1990). Attention and Structure in Sequence Learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 17–30. https://doi.org/10.1037/0278-7393.16.1.17
Conway, C. M., & Christiansen, M. H. (2005). Modality-constrained statistical
learning of tactile, visual, and auditory sequences. Journal of Experimental
Psychology: Learning Memory and Cognition, 31(1), 24–39. 87
https://doi.org/10.1037/0278-7393.31.1.24
Deroost, N., & Soetens, E. (2006). Perceptual or motor learning in SRT tasks with complex sequence structures. Psychological Research, 70(2), 88–102. https://doi.org/10.1007/s00426-004-0196-3
Fiser, J., & Aslin, R. N. (2002). Statistical Learning of Higher-Order Temporal Structure from Visual Shape Sequences. Journal of Experimental Psychology: Learning Memory and Cognition, 28(3), 458–467. https://doi.org/10.1037/0278- 7393.28.3.458
Fletcher, P. C., Zafiris, O., Frith, C. D., Honey, R. A. E., Corlett, P. R., Zilles, K., & Fink, G. R. (2005). On the benefits of not trying: Brain activity and connectivity reflecting the interactions of explicit and implicit sequence learning. Cerebral Cortex, 15(7), 1002–1015. https://doi.org/10.1093/cercor/bhh201
Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality versus modality specificity: The paradox of statistical learning. Trends in Cognitive Sciences, 19(3), 117–125. https://doi.org/10.1016/j.tics.2014.12.010
Giard, M. H., & Peronnet, F. (1999). Auditory-visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11(5), 473–490. https://doi.org/10.1162/089892999563544
Giorgio, J., Karlaftis, V. M., Wang, R., Shen, Y., Tino, P., Welchman, A., & Kourtzi, Z. (2018). Functional brain networks for learning predictive statistics. Cortex, 107, 204–219. https://doi.org/10.1016/j.cortex.2017.08.014
Gladwin, T. E., ’t Hart, B. M., & de Jong, R. (2008). Dissociations between motor- related EEG measures in a cued movement sequence task. Cortex, 44(5), 521–
88
536. https://doi.org/10.1016/j.cortex.2007.10.005
Golby, A., Silverberg, G., Race, E., Gabrieli, S., O’Shea, J., Knierim, K., Stebbins, G., & Gabrieli, J. (2005). Memory encoding in Alzheimer’s disease: An fMRI study of explicit and implicit memory. Brain, 128(4), 773–787. https://doi.org/10.1093/brain/awh400
Holcomb, P. J. (1993). Semantic priming and stimulus degradation: Implications for the role of the N400 in language processing. Psychophysiology, 30(1), 47–61. https://doi.org/10.1111/j.1469-8986.1993.tb03204.x
Holcomb, P. J., & Neville, H. J. (1990). Auditory and Visual Semantic Priming in Lexical Decision: A Comparison Using Event-related Brain Potentials. Language and Cognitive Processes, 5(4), 281–312. https://doi.org/10.1080/01690969008407065
Hu, W., Lu, Y., Wang, L., & Zhang, J. X. (2013). Sequence representation during response preparation in the serial reaction time task. NeuroReport, 24(10), 544– 549. https://doi.org/10.1097/WNR.0b013e3283621329
Keele, S. W., Mayr, U., Ivry, R., Hazeltine, E., & Heuer, H. (2003). The Cognitive and Neural Architecture of Sequence Representation. Psychological Review, 110(2), 316–339. https://doi.org/10.1037/0033-295X.110.2.316
Kemény, F., & Lukács, Á. (2019). Sequence in a sequence: Learning of auditory but not visual patterns within a multimodal sequence. Acta Psychologica, 199(June), 102905. https://doi.org/10.1016/j.actpsy.2019.102905
Kemény, F., & Meier, B. (2016). Multimodal sequence learning. Acta Psychologica, 164, 27–33. https://doi.org/10.1016/j.actpsy.2015.10.009
Kemény, F., & Németh, K. (2017). Stimulus dependence and cross-modal
89
interference in sequence learning. Quarterly Journal of Experimental Psychology, 70(12), 2535–2547. https://doi.org/10.1080/17470218.2016.1246579
Kóbor, A., Takács, Á., Kardos, Z., Janacsek, K., Horváth, K., Csépe, V., & Nemeth, D. (2018). ERPs differentiate the sensitivity to statistical probabilities and the learning of sequential structures during procedural learning. Biological Psychology, 135, 180–193. https://doi.org/10.1016/j.biopsycho.2018.04.001
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621–647. https://doi.org/10.1146/annurev.psych.093008.131123
Li, S., Chen, S., Zhang, H., Zhao, Q., Zhou, Z., Huang, F., Sui, D., Wang, F., & Hong, J. (2020). Dynamic cognitive processes of text-picture integration revealed by event-related potentials. Brain Research, 1726(October), 146513. https://doi.org/10.1016/j.brainres.2019.146513
Li, X., Zhao, X., Shi, W., Lu, Y., & Conway, C. M. (2018). Lack of cross-modal effects in dual-modality implicit statistical learning. Frontiers in Psychology, 9(FEB), 1–10. https://doi.org/10.3389/fpsyg.2018.00146
Martens, S., Kandula, M., & Duncan, J. (2010). Restricted attentional capacity within but not between sensory modalities: An individual differences approach. PLoS ONE, 5(12), 1–6. https://doi.org/10.1371/journal.pone.0015280
Martini, M., Sachse, P., Furtner, M. R., & Gaschler, R. (2015). Why should working memory be related to incidentally learned sequence structures? Cortex, 64(0), 407–410. https://doi.org/10.1016/j.cortex.2014.05.016
90
Mayr, U. (1996). Spatial attention and implicit sequence learning: Evidence for independent learning of spatial and nonspatial sequences. Journal of Experimental Psychology: Learning Memory and Cognition, 22(2), 350–364. https://doi.org/10.1037/0278-7393.22.2.350
McKone, E. (1995). Short-Term Implicit Memory for Words and Nonwords. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(5), 1108– 1126. https://doi.org/10.1037/0278-7393.21.5.1108
Mckone, E., & Dennis, C. (2000). Short-term implicit memory : Visual , auditory , and cross-modality priming. 7(2), 341–346.
McPherson, W. B., & Holcomb, P. J. (1999). An electrophysiological investigation of semantic priming with pictures of real objects. Psychophysiology, 36(1), 53–65. https://doi.org/10.1017/S0048577299971196
Mitchel, A. D., & Weiss, D. J. (2011). Learning Across Senses: Cross-Modal Effects in Multisensory Statistical Learning. Journal of Experimental Psychology: Learning Memory and Cognition, 37(5), 1081–1091. https://doi.org/10.1037/a0023700
Molinaro, N., Barber, H. A., Caffarra, S., & Carreiras, M. (2015). On the left anterior negativity (LAN): The case of morphosyntactic agreement: A Reply to Tanner etal. Cortex, 66, 156–159. https://doi.org/10.1016/j.cortex.2014.06.009
Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19(1), 1–32. https://doi.org/10.1016/0010-0285(87)90002-8
Palolahti, M., Leino, S., Jokela, M., Kopra, K., & Paavilainen, P. (2005). Event- related potentials suggest early interaction between syntax and semantics during
91
on-line sentence comprehension. Neuroscience Letters, 384(3), 222–227. https://doi.org/10.1016/j.neulet.2005.04.076
Peterson, D. S., King, L. A., Cohen, R. G., & Horak, F. B. (2016). Cognitive contributions to freezing of gait in parkinson disease: Implications for physical rehabilitation. Physical Therapy, 96(5), 659–670. https://doi.org/10.2522/ptj.20140603
Poncelet, P. E., & Giersch, A. (2015). Tracking visual events in time in the absence of time perception: Implicit processing at the ms level. PLoS ONE, 10(6), 1–24. https://doi.org/10.1371/journal.pone.0127106
Richard, M. V., Clegg, B. A., & Seger, C. A. (2009). Implicit motor sequence learning is not represented purely in response locations. Quarterly Journal of Experimental Psychology, 62(8), 1516–1522. https://doi.org/10.1080/17470210902732130
Rossignol, S., & Jones, G. M. (1976). Audio-spinal influence in man studied by the H-reflex and its possible role on rhythmic movements synchronized to sound. Electroencephalography and Clinical Neurophysiology, 41(1), 83–92. https://doi.org/10.1016/0013-4694(76)90217-0
Silva, S., Folia, V., Inácio, F., Castro, S. L., & Petersson, K. M. (2018). Modality effects in implicit artificial grammar learning: An EEG study. Brain Research, 1687, 50–59. https://doi.org/10.1016/j.brainres.2018.02.020
Tabullo, Á., Sevilla, Y., Segura, E., Zanutto, S., & Wainselboim, A. (2013). An ERP study of structural anomalies in native and semantic free artificial grammar: Evidence for shared processing mechanisms. Brain Research, 1527, 149–160. https://doi.org/10.1016/j.brainres.2013.05.022
92
Teder-Sälejärvi, W. A., Di Russo, F., McDonald, J. J., & Hillyard, S. A. (2005). Effects of spatial congruity on audio-visual multimodal integration. Journal of Cognitive Neuroscience, 17(9), 1396–1409. https://doi.org/10.1162/0898929054985383
Thaut, M. H., Kenyon, G. P., Schauer, M. L., & McIntosh, G. C. (1999). The connection between rhythmicity and brain function. IEEE Engineering in Medicine and Biology Magazine, 18(2), 101–108. https://doi.org/10.1109/51.752991
Urry, K., Burns, N. R., & Baetu, I. (2015). Accuracy-based measures provide a better measure of sequence learning than reaction time-based measures. Frontiers in Psychology, 6(August), 1–14. https://doi.org/10.3389/fpsyg.2015.01158
Vallet, G., Brunel, L., & Versace, R. (2010). The perceptual nature of the cross-modal priming effect: Arguments in favor of a sensory-based conception of memory. Experimental Psychology, 57(5), 376–382. https://doi.org/10.1027/1618- 3169/a000045
Verwey, W. B., & Clegg, B. A. (2005). Effector dependent sequence learning in the serial RT task. Psychological Research, 69(4), 242–251. https://doi.org/10.1007/s00426-004-0181-x
West, W. C., & Holcomb, P. J. (2002). Event-related potentials during discourse-level semantic integration of complex pictures. Cognitive Brain Research, 13(3), 363– 375. https://doi.org/10.1016/S0926-6410(01)00129-X
Willingham, D. B. (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105(3), 558–584. https://doi.org/10.1037//0033- 295x.105.3.558
93
Willingham, D. B. (1999). Implicit motor sequence learning is not purely perceptual. Memory and Cognition, 27(3), 561–572. https://doi.org/10.3758/BF03211549
Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the Development of Procedural Knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(6), 1047–1060. https://doi.org/10.1037/0278- 7393.15.6.1047
Ziessler, M. (1998). Response-effect learning as a major component of implicit serial learning. Journal of Experimental Psychology: Learning Memory and Cognition, 24(4), 962–978. https://doi.org/10.1037/0278-7393.24.4.962
Zießler, M. (1994). The impact of motor responses on serial-pattern learning. Psychological Research, 57(1), 30–41. https://doi.org/10.1007/BF00452993
Ziessler, M., & Nattkemper, D. (2001). Learning of Event Sequences is Based on Response-Effect Learning: Further Evidence from a Serial Reaction Task. Journal of Experimental Psychology: Learning Memory and Cognition, 27(3), 595–613. https://doi.org/10.1037/0278-7393.27.3.595 |