參考文獻 |
[1] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365.
[2] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[3] Singh, R., & Srivastava, S. (2017). Stock prediction using deep learning. Multimedia Tools and Applications, 76(18), 18569-18584.
[4] Wang, Y., Hou, Y., Che, W., & Liu, T. (2020). From static to dynamic word representations: a survey. International Journal of Machine Learning and Cybernetics, 1-20.
[5] Akita, R., Yoshihara, A., Matsubara, T., & Uehara, K. (2016, June). Deep learning for stock prediction using numerical and textual information. In 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS) (pp. 1-6). IEEE.
[6] Chiewhawan, T., & Vateekul, P. (2020, July). Explainable deep learning for thai stock market prediction using textual representation and technical indicators. In Proceedings of the 8th International Conference on Computer and Communications Management (pp. 19-23).
[7] Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084.
[8] Kumar, R. B., Kumar, B. S., & Prasad, C. S. S. (2012). Financial news classification using SVM. International Journal of Scientific and Research Publications, 2(3), 1-6.
[9] Li, X., Li, Y., Yang, H., Yang, L., & Liu, X. Y. (2019). DP-LSTM: Differential privacy-inspired LSTM for stock prediction using financial news. arXiv preprint arXiv:1912.10806.
[10] Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & operations research, 32(10), 2513-2522.
[11] Liu, G., & Wang, X. (2018). A numerical-based attention method for stock market prediction with dual information. Ieee Access, 7, 7357-7367.
[12] Hwang, Y., Kim, H. J., Choi, H. J., & Lee, J. (2020). Exploring abnormal behavior patterns of online users with emotional eating behavior: topic modeling study. Journal of medical Internet research, 22(3), e15700.
[13] Qasem, M., Thulasiram, R., & Thulasiram, P. (2015, August). Twitter sentiment classification using machine learning techniques for stock markets. In 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 834-840). IEEE.
[14] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
[15] Le, Q., & Mikolov, T. (2014, June). Distributed representations of sentences and documents. In International conference on machine learning (pp. 1188-1196). PMLR.
[16] Peng, Y., & Jiang, H. (2015). Leverage financial news to predict stock price movements using word embeddings and deep neural networks. arXiv preprint arXiv:1506.07220.
[17] Schumaker, R. P., & Chen, H. (2009). Textual analysis of stock market prediction using breaking financial news: The AZFin text system. ACM Transactions on Information Systems (TOIS), 27(2), 1-19.
[18] Sagala, T. W., Saputri, M. S., Mahendra, R., & Budi, I. (2020, January). Stock Price Movement Prediction Using Technical Analysis and Sentiment Analysis. In Proceedings of the 2020 2nd Asia Pacific Information Technology Conference (pp. 123-127).
[19] Liu, H. (2018). Leveraging financial news for stock trend prediction with attention-based recurrent neural network. arXiv preprint arXiv:1811.06173.
[20] Minh, D. L., Sadeghi-Niaraki, A., Huy, H. D., Min, K., & Moon, H. (2018). Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network. Ieee Access, 6, 55392-55404.
[21] Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015, June). Deep learning for event-driven stock prediction. In Twenty-fourth international joint conference on artificial intelligence.
[22] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
[23] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
[24] Qiu, J., Wang, B., & Zhou, C. (2020). Forecasting stock prices with long-short term memory neural network based on attention mechanism. PloS one, 15(1), e0227222.
[25] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
[26] Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (pp. 448-456). PMLR.
[27] Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.
[28] 謝宜霖。「運用注意力機制與層標準化技術於孿生神經網路以改善雙向長短期記憶模型之不平衡資料集分類」。碩士論文,國立中興大學資訊科學與工程學系所,2021。
[29] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
[30] Wang, P., Xu, B., Xu, J., Tian, G., Liu, C. L., & Hao, H. (2016). Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification. Neurocomputing, 174, 806-814.
[31] Lau, J. H., & Baldwin, T. (2016). An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv preprint arXiv:1607.05368.
[32] Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., ... & Liu, T. (2020, November). On layer normalization in the transformer architecture. In International Conference on Machine Learning (pp. 10524-10533). PMLR.
[33] Galetzka, M., Strüngmann, L., & Weber, C. (2014). Intelligent Predictions: an empirical study of the Cortical Learning Algorithm. University of Applied Sciences Mannheim. |