博碩士論文 108423030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.149.214.52
姓名 曾子倩(TSENG,TZU-CHIEN)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 詞嵌入情感分析模型對於股票預測之適用性評估
(Applicability evaluation of word embedding sentiment analysis model for stock prediction)
相關論文
★ 具代理人之行動匿名拍賣與付款機制★ 網路攝影機遠端連線安全性分析
★ HSDPA環境下的複合式細胞切換機制★ 樹狀結構為基礎之行動隨意網路IP位址分配機制
★ 平面環境中目標區域之偵測 - 使用行動感測網路技術★ 藍芽Scatternet上的P2P檔案分享機制
★ 交通壅塞避免之動態繞路機制★ 運用UWB提升MANET上檔案分享之效能
★ 合作學習平台對團體迷思現象及學習成效之影響–以英文字彙學習為例★ 以RFID為基礎的室內定位機制─使用虛擬標籤的經驗法則
★ 適用於實體購物情境的行動商品比價系統-使用影像辨識技術★ 信用卡網路刷卡安全性
★ DEAP:適用於行動RFID系統之高效能動態認證協定★ 在破產預測與信用評估領域對前處理方式與分類器組合的比較分析
★ 單一類別分類方法於不平衡資料集-搭配遺漏值填補和樣本選取方法★ 正規化與變數篩選在破產領域的適用性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 隨著科技的發展,投資者可以透過多種渠道,獲得金融商品的最新市場情報,增加整理分析資訊的時間成本,而難以透過自主分析準確判斷合適的投資時機,因此,如何掌握不同面向的股票買賣決策資訊,成為了獲利的重大關鍵。
本研究針對文本的內容主要提出利用靜態與動態詞嵌入,透過機器學習與深度學習分類器建立情感分析模型,預測社群媒體之文章內文的情感分數,再結合結構化資料,進行股票預測。過往的股票領域文本的情感分析研究中,雖然有許多研究針對股票相關文本使用詞嵌入方法建立情感分析模型,分辨其情感意涵,用以預測股票未來漲跌趨勢,但卻未有將此方法與其他情感方法加以比較,判斷不同情感分析方法在股票預測中的適用性,故本研究將所建構之詞嵌入情感分析模型,與傳統的辭典法和情感分析套件 Vader 進行比較,找尋有利於股票預測之情感分析方法。
本研究收集三個社群媒體文本數據(Twitter、Instagram、Facebook),搭配不同的情感分析方法(辭典法、API、靜態詞嵌入情感分析模型),並以四種不同的分類器,Random Forest、Naïve Bayes、LSTM、PF-LSTM 進行分類,期望了解不同情感分析方法對於股票預測的作用。最終,本實驗發現動態詞嵌入 BERT 搭配 SO 的情感分析模型,可判別出社群媒體文本中所隱藏的情感意涵且對於股票漲跌預測結果具有正面的影響,準確率最高達 70.15%,為最佳情感分析模型。
摘要(英) With the development of technology, investors can obtain the latest market intelligence of financial products through multiple channels, and it also increase the time cost of analyzing information. It is difficult to accurately determine the appropriate investment timing through independent analysis. Therefore, how to master different aspects of stocks Information on buying and selling decisions has become a significant key to profit.
This research mainly proposes the use of static and dynamic word embedding for the content of the text, and the establishment of sentiment analysis models through machine learning and deep learning classifiers to predict the sentiment scores of articles in social media, and then combine structured data to make stock predictions. In the past research on sentiment analysis of texts, although many researches used word embedding methods to establish sentiment analysis models for stock-related texts to distinguish their sentimental meanings to predict the future rise and fall trends of stocks, but they didn’t use this method compare with other sentiment methods to judge the applicability of different sentiment analysis methods in stock forecasting. Therefore, this research will construct word representation sentiment analysis
model is compared with traditional dictionary methods and Vader API to find sentiment analysis methods that are conducive to stock forecasting.
This study collected three social media text data (Twitter, Instagram, Facebook), combined with different sentiment analysis methods (dictionary, API, static word embedding sentiment analysis model), and four classifiers, Random Forest , Naïve Bayes, LSTM, PF-LSTM to classify, expect to understand the effect of different sentiment analysis methods on stock prediction. In the end, this experiment found Bidirectional Encoder Representations from Transformers and Sentiment Orientation emotional analysis model can identify the emotional meaning in the social media and has a positive impact on the stock price prediction. The accuracy rate is as high as 70.15%, which is the best sentiment analysis model.
關鍵字(中) ★ 詞嵌入
★ 情感分析
★ 文字探勘
★ 股票預測
★ 機器學習
★ 深度學習
關鍵字(英) ★ word embedding
★ sentiment analysis
★ text mining
★ stock prediction
★ machine learning
★ deep learning
論文目次 摘要 II
Abstract III
誌謝 IV
目錄 V
圖目錄 VII
表目錄 IX
一、 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究目的 4
二、 文獻探討 5
2-1 文字探勘 5
2-2 過往股票預測文獻探討 5
2-3 情感分析(Sentiment Analysis) 6
2-4 Word2Vec 8
2-5 BERT (Bidirectional Encoder Representations from Transformers) 9
2-6 分類器 10
三、 研究設計 17
3-1 研究資料集 18
3-2 資料前處理 19
3-3 研究一:比較不同詞嵌入情感分析模型分辨文本情感意涵之效能 22
3-4 研究二:探討不同情感分析方法對於股票漲跌預測之影響 25
3-5 三種社群媒體資料的合併 29
3-6 研究三:探討結構化與非結構化資料合併,預測股票漲跌結果 29
3-7 股票漲跌標記 31
3-8 評估指標 31
四、 實驗結果與分析 32
4-1 比較不同詞嵌入情感分析模型分辨文本情感意涵之效能 32
4-2 探討社群媒體最佳文本發酵日 34
4-3 探討不同情感分析方法對於股票漲跌預測之影響 37
4-3-1 從不同分類器角度下,比較最佳的情感分析方法 38
4-3-2 小結 43
4-4 探討機器學習與深度學習的股票預測效能 44
4-5 探討不同數據集對於股票漲跌預測的影響 47
4-5-1 探討不同社群媒體來源準確率高低差的因素 47
4-5-2 探討三種社群媒體合併方法的適用性 50
4-6 探討結構化與非結構化資料合併,預測股票漲跌結果 51
4-7 探討不同情境下的最佳組合 54
4-7-1 詞嵌入情感分析模型最佳組合分析 54
4-7-2 股票漲跌預測最佳組合分析 55
五、 結論 57
5-1 結論與貢獻 57
5-2 研究限制 59
5-3 未來研究與建議 59
參考文獻 61
參考文獻 [1]. 林振穎。「從新聞文章預測股票走勢:使用粒子群演算法與情緒分析」,國立高雄應用科技大學資訊管理系碩士論文,2017。
[2]. Statista, Number of social media users worldwide from2010 to 2020, from
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/ ,Viewed on 2019/07/02
[3]. J. Si, A. Mukherjee, B. Liu, Q. Li and H. Li, Exploiting Social Relations and Sentiment for Stock Prediction, Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pp. 24–29, 2014
[4]. J. Kordonis, S. Symeonidis and A. Arampatzis, “Stock Price Forecasting via Sentiment Analysis on Twitter,” Conference:The 20th Panhellenic Conference on Informatics, 2016,
[5]. U. Pasupulety, A.A. Anees, S. Anmol and B.R. Mohan, “Predicting Stock Prices using Ensemble Learning and Sentiment Analysis,” IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering, 2019
[6]. E. Kalampokis, E. Tambouris and K. Tarabanis, “Understanding the predictive power of social media,” Internet Research, 235, pp 544-559, 2013
[7]. J. Devlin, M.-W Chang, K. Lee and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” Computation and Language, 2018
[8]. S. Mohan, S. Mullapudi, S. Sammeta, P. Vijayvergia and C. David, “Stock Price Prediction Using News Sentiment Analysis,” IEEE Fifth International Conference on Big Data Computing Service and Applications, 2019
[9]. X.Li, H. Xie, L. Chen, J. Wang and X. Deng, “News impact on stock price return via sentiment analysis,” Knowledge-Based Systems, 2014
[10]. Z. Jin, Y. Yang and Y. Liu, “Stock closing price prediction based on sentiment analysis and LSTM,” Neural Computing and Applications, 2019
[11]. 邱聖皓。「運用文字探勘技術於股價預測:考量基本面、技術面、籌碼面與消息面特徵」,國立中正大學資管系碩士論文,2018。
[12]. D. Dash, R. Ren and T. Liu, “Forecasting Stock Market Movement Direction Using Sentiment Analysis and Support Vector Machine,” IEEE Systems Journal, Volume: 13 Issue: 1, 2018
[13]. B. Zhao, Y. He, C. Yuan and Y. Huang, “Stock Market Prediction Exploiting Microblog
Sentiment Analysis,” International Joint Conference on Neural Networks (IJCNN), 2016
[14]. X. Li, X. Huang, X. Deng and S. Zhu, “Enhancing Quantitative Intra-day Stock Return Prediction by Integrating both Market News and Stock Prices Information,” Neurocomputing, 2014
[15]. Saravanan and Mala , “Stock market prediction system: A wavelet based approach,” Applied Mathematics and Information Sciences, 2018
[16]. H. Chung and K.-S. Shin, “Genetic algorithm-optimized long short-term memory network for stock market prediction,” Sustainability,2018
[17]. H. Yang, Y. Zhu and Q. Huang, “A multi-indicator feature selection for CNN-driven stock index prediction,” In Proceedings of the International Conference on Neural Information Processing, 2018
[18]. V. Rajput and S. Bobde, “Stock market forecasting techniques: Literature survey. International Journal of Computer Science and Mobile Computing.” 2016
[19]. Jessica and R.S. Oetama, “Sentiment Analysis on Official News Accounts of
Twitter Media in Predicting Facebook Stock,” International Conference on New Media Studie, 2019
[20]. P. Krishna, S.F. Kamraan and Priyanka, “Stock Market Prediction Using Sentimental Analysis,” International Journal of Advanced Research in Engineering and Technology, 2020
[21]. A.H. Ghahfarrokhi and M. Shamsfard, “Tehran stock exchange prediction using sentiment analysis of online textual opinions,” Statistical Finance, 2019
[22]. A. Khedr and N. Yaseen, “Predicting Stock Market Behavior using Data Mining Technique and News Sentiment Analysis,” Intelligent Systems and Applications, 2017
[23]. S. Urolagin, “Text Mining of Tweet for Sentiment Classification and Association with Stock Prices”, International Conference on Computer and Applications (ICCA), 2017
[24]. Y. Peng and H. Jiang, “Leverage Financial News to Predict Stock Price Movements
Using Word Embeddings and Deep Neural Networks, “Association for Computational L inguistics, 2016
[25]. T. Sun, J. Wang, P. Zhang, Y. Cao, B. Liu and D. Wang, “Predicting Stock Price Returns Using Microblog Sentiment for Chinese Stock Market,” International Conference on Big Data Computing and Communications (BIGCOM), 2017
[26]. M. Li, W. Li, F. Wang, X. Jia, and G. Rui, “Applying BERT to analyze investor sentiment in stock market,” Neural Computing and Applications,2020
[27]. M. G. Sousa, K. Sakiyama and L.S. Rodrigues, “BERT for Stock Market Sentiment Analysis,” IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019
[28]. M. Bilgin and H. Köktaş, “Sentiment Analysis with Term Weighting and Word Vectors,” The International Arab Journal of Information Technology, Vol. 16, No. 5, 2019
[29]. T. Mikolov, K. Chen, G. Corrado and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” Computation and Language, 2013
[30]. A. Picasso, S. Merello, Y. Ma, L. Oneto and E. Cambria,“Technical analysis and sentiment embeddings for market trend prediction,” Expert Systems with Applications, 2019
[31]. K. Joshi, H.N. Bharathi and J. Rao, “Stock Trend Prediction Using News Sentiment Analysis,”International Journal of Computer Science & Information Technology (IJCSIT), Vol 8, No 3, 2016
[32]. S. Kalra and J.S. Prasad, “Efficacy of News Sentiment for Stock Market Prediction,” International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 2019
[33] D.S. Pinheiro and M. Dras, “Stock market prediction with deep learning: A character-based neural language model for event-based trading,” In Proceedings of the Australasian Language Technology Association Workshop, 2017.
[34] M.Y. Chen, C.H. Liao and R.-P. Hsieh, “Modeling public mood and emotion: Stock market trend prediction with anticipatory computing approach,” Computers in Human Behavior, 2019
[35] L. Breiman, “Random Forests,” Machine Learning, 45, 5-32, 2001
[36] H. Trevor, T. Robert and F. Jerome, “The Elements of Statistical Learning: Data Mining, Inference, and Prediction,” Springer, ISBN 0387952845, 2008.
[37] H. Zhang, “The optimality of Naive Bayes,” Proc. FLAIRS, 2004
[38] X. Ma , P. Karkus, D. Hsu and W.S. Lee, “Particle Filter Recurrent Neural Networks,”
arXiv:1905.12885v2, 2019
[39] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Light gated recurrentunits for
speech recognition,” IEEE Transactions on Emerging Topics in Computational Intelligence, 2018
[40] J.-F. Chen, W.-L. Chen, C.-P. Huang, S.-H. Huang and A.-P. Chen,
“Financial time-series data analysis using deep convolutional neural networks,”
In Proceedings of the 2016 7th International Conference on Cloud Computing and
Big Data (CCBD), 2016
[41] Y. Liu, Q. Zeng, H. Yang and A. Carrio, “Stock price movement prediction from
financial news with deep learning and knowledge graph embedding,” In Proceedings
of the Pacific Rim Knowledge Acquisition Workshop, 2018
[42] L.-C. Cheng, Y.-H. Huang and M.-E Wu, “Applied attention-based LSTM neural
networks in stock prediction,” In Proceedings of the 2018 IEEE International
Conference on Big Data (Big Data), 2018.
[43] X. Ding, Y. Zhang, T. Liu and J. Duan, “Deep learning for event-driven stock
prediction,” In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
[44] U. Gudelek, A. Boluk and M. Ozbayoglu, “A deep learning based stock trading model
with 2-D CNN trend detection,” In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, 2017
[45]羅聖明。「在破產預測與信用平均領域對資料正規化與離散化的比較分析」,國立
中央大學大學資訊管理系碩士論文,2020。
[46] C. Cochrane, Time Series Nested Cross-Validation. Accessed,
https://towardsdatascience.com/timeseries-nested-cross-validation-76adba623eb9,
Viewed on 2018/05/19
[47] S. Carta, S. Consoli, L. Piras, A.S. Podda and D.R. Recupero, “Explainable Machine
Learning Exploiting News and Domain-Specific Lexicon for Stock Market Forecasting,” In IEEE, 2021
指導教授 蘇坤良(Su, Kuen-Liang) 審核日期 2021-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明