博碩士論文 108521015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.149.238.239
姓名 張永皓(Yung-Hao Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用應力及內嵌波導結構改善相對雜訊強度及亮度之高速垂直共振腔面射型雷射陣列
(The Improvements of Relative Intensity Noise and Brightness in High-Speed VCSEL Arrays by Use of Package Induced Strain and Inter-Mesa Waveguides)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 高速、高亮度的垂直共振腔面射型雷射(VCSEL)陣列可以作為有效率的光無線通訊光源,也是實現下一世代無線通訊網路(例如:6G、衛星通訊)非常關鍵的技術,然而傳統的高功率、高亮度及(類)單模的VCSEL通常存在高相對雜訊強度(RIN noise)和空間電洞不足(spatial hole burning)效應而嚴重限制了高速資料傳輸的表現。
在本論文中,會利用特殊的VCSEL陣列結構來改善最大單模(SM)輸出功率、亮度、相對雜訊強度及調變速度,與傳統VCSEL陣列不同,我們在各個Mesa間加入波導互相連結並且於晶片背面電鍍銅基板,加入這兩種特殊結構能夠得到更高的輸出功率、更窄的發散角、更低的RIN noise(-130 vs. -140 dB)及更平坦的頻率響應,也使Data rate為12.5Gbit/s的眼圖能有更小的jitters(4.5 vs. 5.9 ps)及更小的RIN noise,我們所製作的7x7陣列可達到約100mW的最大單模功率,發散角1/e^2為8°、半高寬(FWHM)為5°,單極化輸出(10dB正交極化抑制比),且在Data rate為12.5Gbit/s時有清晰的眼圖傳輸。
我們設計的VCSEL陣列有這些顯著的靜態與動態特性,主要因素為使用波導結構及電鍍銅基板造成的應力導致單模輸出時的光子密度被稀釋,使得VCSEL陣列達到單極化並且增加了基模的選擇性,進而降低了RIN noise和提高了輸出亮度。
摘要(英) High-speed and high-brightness vertical-cavity surface-emitting laser (VCSEL) arrays, which can serve as an efficient light source for optical wireless communication (OWC), plays a crucial role in the next generation wireless communication network e.g, 6G and satellite communications. However, the traditional high-power, high-brightness, and (quasi-) single-mode (SM) VCSEL usually suffers the problems of high relative intensity noise (RIN) and spatial hole burning effect, which seriously limit their performances in high-speed data transmission. In this work, a novel VCSEL array structure is demonstrated to fundamentally overcome the trade-off among the maximum SM output power, brightness, RIN, and modulation speed. Compared with the traditional VCSEL arrays, which have several independent VCSEL cavities in parallel, the novel array structure demonstrated here has additional passive optical waveguides connecting the neighboring VCSEL unit and an extra electroplated cooper substrate integrated with the backside of our chip. As compared to the reference array without cooper substrate and connected waveguides, the demonstrated array exhibits higher (quasi-) SM output power, narrower divergence angle (higher brightness), a lower RIN (-130 vs. -140 dB), and a flatter E-O response. This is turn leads to smaller jitters (4.5 vs. 5.9 ps) and less intensity noise in the measured 12.5 Gbit/sec eye-patterns. The demonstrated 7x7 array exhibits around 100mW maximum SM output power with 1/e^2 divergence angle as norrow as 8°(FWHM:5°), single polarized output (10dB polarization suppression ratio), and clear eye-opening under 12.5 Gbit/sec modulation. These remarkable static/dynamic performances in our array are due to the dilution of photon density in the SM output pattern by the extended passive waveguide and the external strain induced by the electroplating cooper substrate. It leads to the single polarized lasing mode and the increase of fundamental mode selectivity, which reduces the RIN and enhances the brightness of output beam, respectively.
關鍵字(中) ★ 雷射
★ 波導
★ 應力
關鍵字(英) ★ VCSEL
★ waveguide
★ strain
論文目次 摘 要 I
Abstract II
致謝 IV
Acknowledgement V
圖目錄 IX
表目錄 XVI
第一章 序論 1
1-1 簡介 1
1-2 光無線通訊及通訊衛星 4
1-3 垂直共振腔面射型雷射(VCSEL) 簡介 8
1-4 面射型雷射的電流侷限 10
1-5 VCSEL之氧化層結構 12
1-6 高速、高亮度及低相對雜訊強度VCSEL陣列製作 14
第二章 實驗理論 20
2-1 850 nm波段VCSEL晶片磊晶結構 20
2-2 VCSEL元件結構設計 24
2-3 水氧氧化系統 26
2-3-1 VCSEL濕氧化原理 27
2-3-2 氧化層掏離製程 29
2-3-3 IR CCD系統 31
2-4 發散角 33
2-5 相對雜訊強度(Relative Intensity Noise, RIN) 35
第三章 實驗流程 41
3-1 鋅擴散 (Zn diffusion) 41
3-2 水氧氧化製程 45
3-3 製作電極 (P Metal 和 N Metal) 49
3-4 Passivation and Via Hole Opening 52
3-5 平坦化(PI製程) 53
3-6 PAD金屬 54
第四章 實驗結果及探討 55
4-1 量測系統簡介 55
4-1-1 電流對電壓(I-V)的量測 55
4-1-2 光功率對電流(L-I)之量測 56
4-1-3 遠場(FFP Far Field Pattern)量測系統 56
4-1-4 頻寬(Bandwidth)之量測系統 57
4-1-5 頻譜(Spectrum)之量測系統 58
4-1-6 眼圖(Eye Pattern)量測系統 58
4-1-7 極化(Polarization)量測系統 59
4-1-8 相對雜訊強度(RIN noise)量測系統 60
4-2 IET 850nm波段VCSEL陣列結構圖 62
4-2-1 光功率-電流-電壓(L-I-V)曲線比較 64
4-2-2 頻譜(Spectrum)比較 66
4-2-3 遠場發散角(Far Field Pattern, FFP)量測 68
4-2-4 E-O頻寬量測 69
4-3 VCSEL陣列電鍍銅基板結構量測比較 71
4-3-1 光功率-電流-電壓(L-I-V)曲線比較 71
4-3-2 頻譜(Spectrum)比較 72
4-3-3 極化(Polarization)量測比較 74
4-3-4 遠場(Far Field Pattern)量測比較 76
4-3-5 亮度(Brightness)計算結果 77
4-3-6 E-O頻寬比較 79
4-3-7 相對雜訊強度(RIN noise)量測比較 80
4-3-8 眼圖(Eye Pattern)量測比較 81
4-4 波導結構7×7陣列與11×11陣列比較 83
第五章 結論及未來探討 86
第六章 Reference 88
參考文獻 [1] M. Z. Chowdhury, M. Shahjalal, S. Ahmed and Y. M. Jang, "6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions," IEEE Open Journal of the Communications Society, vol. 1, pp. 957-975, 2020
[2] Morgan, Rachel, “Nanosatellite Lasercom System,” Internet: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=0&article=3653&context=smallsat&type=additional, Aug., 2017
[3] N. Haghighi, P. Moser and J. A. Lott, “Power, Bandwidth, and Efficiency of Single VCSELs and Small VCSEL Arrays,” IEEE J. Sel. Topics. Quantum Electronics., vol. 25, no. 6, pp. 1-15, Nov.-Dec., 2019
[4] J. Skidmore, “Semiconductor Lasers for 3-D Sensing,” Opt. & Photonics. News, pp. 28-33, Feb., 2019
[5] J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE, Vertical-Cavity Surface Emitting Lasers XII, vol. 6908, pp. 690808, Jan. 29, 2008
[6] R. F. Carson, M. E. Warren, P. Dacha, T. Wilcox, J. G. Maynard, David J. Abell, and K. J. Otis, “Progress in High-Power, High-Speed VCSEL Arrays,” Proc. SPIE, Vertical-Cavity Surface Emitting Lasers XX, vol. 9766, pp. 97660B, Mar. 18, 2016
[7] R. F. Carson, E. W. Taylor, A. H. Paxton, H. Schone, K. D. Choquette, H. Q. Hou, M. E. Warren, and K. L. Lear, ‘‘Surface-emitting laser technology and its application to the space radiation environment,’’ Proc. SPIE, Advancement of Photonics for Space: A Critical Review, vol. 10288, Jul. 29, 1997.
[8] S. Nakagawa, D. Kuchta, C. Schow, R John, A. Larry. Coldren,Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” Proc. OFC 2008, pp. OThS3, San Diego, CA, Feb., 2008
[9] W. W. Chow, K. D. Choquette, M. H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE of Quantum Electronics., vol. 33, no. 10, pp. 1810-1824, Oct.,1997.
[10] K. D. Choquette and H. Q. Hou, “Vertical-cavity surface emitting laser: Moving from research to manufacturing,” Proc. IEEE, vol. 85, no. 11, pp. 1730-1739, Nov., 1997.
[11] Y-C chang, L. A. Coldrem, “Efficient, High-data-rate Tapered oxide-aperture VCSELs using multiple oxide layer,” IEEE J. of Quantum Electronics, vol. 15, no.3, pp.704-715, May., 2009.
[12] Y. Mohammad “Optimizing Optical output power of single-mode vcsels using multiple oxide layer,” IEEE J. of Quantum Electronics, vol. 19, no. 4, pp. 1701708-1701708, July., 2013.
[13] 顏志成,“具有超低耗能,傳輸資料比值在850nm波段超高速(40Gbit/s)面射型雷射,”國立中央大學研究所論文(民國101)
[14] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo, “Corrosion-Based Failure of Oxide-aperture VCSELs,” IEEE J. of Quantum Electronics, vol. 49, no. 12, pp. 1045-1052, Dec., 2013.
[15] Yoshida, M., De Zoysa, M., Ishizaki, K. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nature Mater vol. 18, pp. 121–128, 2019.
[16] Coldren, L.A., Corzine, S.W. and Mašanović, M.L. Diode Lasers and Photonic Integrated Circuits. Ch. 3 (John Wiley & Sons, Inc.) 2nd Edition, 2012.
[17] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol.12, pp. 64840J-1-64840J-12, Feb. 26, 2007.
[18] A. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson, “Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, pp.1602-1604, Aug., 2005.
[19] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett., vol. 85, no. 22, Nov. 29, 2004.
[20] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol 8, no.6 pp.740-742, Jun., 1996.
[21] M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission Over 1-km OM4 multimode fiber at 25 Gb/susing a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett., vol. 25, no.18, pp. 1823-1825, Sep. 15, 2013.
[22] Y. Liu, W.-C. Ng, B. Klein, and K. Hess, “Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity-surface-emitting lasers,” IEEE J. Quantum Electron., vol. 39, no. 1, pp. 99-108, Jan., 2003.
[23] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep., 2001.
[24] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized Vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, no. 4, pp. 234-236, Apr., 1990.
[25] J.E. Bowers, High speed semiconductor laser design and performance, Solid-State Electronics, vol. 30, Issue 1, 1987
[26] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fibre,” Electron. Lett., vol. 26, no. 19, pp. 1628-1629, Sep., 1990.
[27] Y. J. Yang, T. G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting laser,”, Soc. Photo-opt., vol. 1418, pp. 414-421, Nov., 1991.
[28] Y. J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, “Low threshold operation of a GaAs single quantum well mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, no. 16, pp. 1780-1782, Apr., 1991.
[29] Kai-Lun Chi, Jia-Liang Yen, Jhih-Min Wun, Jia-Wei Jiang, I-Cheng Lu, Jason (Jyehong) Chen, Ying-Jay Yang, and Jin-Wei Shi, “Strong Wavelength Detuning of 850 nm Vertical-Cavity Surface-Emitting Lasers for High-Speed (>40 Gbit/sec) and Low-Energy Consumption Operation,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 21, no. 6, pp. 1701510, Nov ,/Dec., 2015.
[30] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” IEEE J. Appl. Phys., vol. 36, no.12, pp. 3770-3778, Dec., 1965.
[31] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InP strained multilayer heterostructures,” J. Appl. Phys., vol. 72, no. 11, pp. 5213-5219, Dec. 1, 1992.
[32] K. D. Choquette, K. M. Geib, I. H. Carol, Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Topics In Quantum Electron., vol. 3, no. 3, pp.916-926, Jun., 1997.
[33] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Tech. Lett., vol. 7, no.11, pp.1237-1239, Nov., 1995.
[34] N. Hplonyak, Jr., and J. M. Dallesasse, “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs ,” Appl. Phys. Lett., vol. 60, no. 25, pp. 3165-3167, Jun., 1992.
[35] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., vol. 69, no. 10, pp.1385-1387, Sep. 2, 1996.
[36] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized Vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, no. 4, pp. 234-236, Apr., 1990.
[37] A. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, and A. Larsson, Member, IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW from VCSELs with a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 368-370, Feb., 2004.
[38] Rashid Safaisini, Student Member, IEEE, John R. Joseph, and Kevin L. Lear, “Scalable High-CW-Power High-Speed 980-nm VCSEL Arrays,” IEEE J. of Quantum Electronics., vol. 46, no. 11, Nov., 2010.
[39] Jia-Liang Yen, Xin-Nan Chen, Kai-Lun Chi, Jason (Jyehong) Chen, and Jin-Wei Shi, “850 nm Vertical-cavity Surface-emitting Laser Arrays with Enhanced High-speed Transmission Performance over a Standard Multi-mode Fiber,” IEEE J. of Lightwave Technol., vol. 35, no. 15, pp. 3242-3249, Aug. 1, 2017.
[40] Hermann A. Haus, “Waves and Fields in Optoelectronics,” Prentice-Hall, 1984.
[41] Tami Pippert, Keysight Technologies, 2017 Internet : https://ww w.eettaiwan.com/20170126ta31-pam4-creates-new-test-challenges/
[42] John Petrilla, Scaling 128GFC, Avago Technologies, 2015 Internet: https://standards.incits.org/apps/group_public/download.php/81212/15-332v0.pdf
[43] D. M. Kuchta, J. Gamelin, J. D. Walker, J. Lin, K. Y. Lau, and J. S. Smith, “Relative intensity noise of vertical cavity surface emitting lasers,” Appl. Phys. Lett, vol. 62, pp. 1194-1196, March, 1993.
[44] T. Yoshikawa, T. Kawakami, H. Saito, H. Kosaka, M. Kajita, K. Kurihara, Y. Sugimoto, and K. Kasahara, "Polarization-controlled single-mode VCSEL," IEEE Journal of Quantum Electronics, vol. 34, no. 6, pp. 1009-1015, June 1998
[45] Y.-G. Ju, Y.-H. Lee, H.-K. Shin, and II Kim, “Strong polarization selectivity in 780-nm vertical-cavity surface-emitting lasers grown on misoriented substrates,” Appl. Phys. Lett, vol. 71, pp. 741-743, Aug., 1997
[46] P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, Gian Paolo Bava and Karl Joachim Ebeling, "Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory," IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, no. 5, pp. 1394-1405, Sept.-Oct. 2003
[47] E. Haglund, M. Jahed, J. S. Gustavsson, A. Larsson, J. Goyvaerts, R. Baets, G. Roelkens, M. Rensing, and P. O’Brien, "High-power single transverse and polarization mode VCSEL for silicon photonics integration," Opt. Express, vol. 27, pp. 18892-18899, June, 2019.
[48] Jin-Wei Shi, Zuhaib Khan, Ray-Hua Horng, Hsiao-Yun Yeh, Chun-Kai Huang, Cheng-Yi Liu, Jie-Chen Shih, Yung-Hao Chang, Jia-Liang Yen, and Jinn-Kong Sheu, “High-power and single-mode VCSEL arrays with single-polarized outputs by using package-induced tensile strain,” Optics Letters, vol. 45, no. 17, pp. 4839-4842, Sep., 2020.
[49] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photonics. Technol. Lett., vol. 20, no. 13, pp. 1121-1123, Jul. 1, 2008.
[50] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers”, J. Quantum Electron., 33, pp. 1810-1824, Oct., 1997.
[51] T. Gründl et al., "Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Hole Burning," IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 4, pp. 1700913-1700913, July-Aug. 2013
[52] II-VI, “940nm Multi Mode High Power VCSEL Array”, 2019 Internet: http://www.ii-vi.com/wp-content/uploads/2019/07/940nm-Multi-Mode-High-Power-VCSEL-Array-web-1.pdf
[53] S.- E. Hashemi, “Relative Intensity Noise (RIN) in High-Speed VCSELs for Short Reach Communication,” Master Thesis, Chalmers University of Technology, 2012.
[54] Jean-Francois Seurin, Guoyang Xu, Baiming Guo, Alexander Miglo, Qing Wang, Prachi Pradhan, James D. Wynn, Viktor Khalfin, Wei-Xiong Zou, Chuni Ghosh, Robert Van Leeuwen, "Efficient vertical-cavity surface-emitting lasers for infrared illumination applications," Proc. SPIE, Vertical-Cavity Surface-Emitting Lasers XV, vol. 7952, pp. 79520G, Feb. 7, 2011
[55] Mial E. Warren, David Podva, Preethi Dacha, Matthew K. Block, Christopher J. Helms, John Maynard, Richard F. Carson, "Low-divergence high-power VCSEL arrays for lidar application," Proc. SPIE, Vertical-Cavity Surface-Emitting Lasers XXII, vol. 10552, pp. 105520E, Feb. 19, 2018
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2021-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明