參考文獻 |
參考文獻
中文部分
任宗浩、陳冠銘(2016)。研究設計與資料分析。載於張俊彥(主編),國際數學與科學教育成就趨勢調查2015國家報告(頁44-60)。臺北市:國立臺灣師範大學科學教育中心。
任宗浩、譚克平、張立民(2011)。二階段分層叢集抽樣的設計效應估計:以 TIMSS 2007調查研究為例。教育科學研究期刊,56(1),33-65。
吳勁甫(2015)。校長領導,學校氣氛對學生閱讀素養影響之多層次分析:以 PISA 2012 台灣之資料為例。
林志哲(2007)。以結構方程模型驗證期望、價值與數學成就的關係。教育學刊,29,103-127。
林素微(2018)。數學課室教師支持與學生數學素養關聯探討:以 PISA 2012 臺灣資料為例。臺灣數學教師,39(1),1-17。doi: 10.6610/TJMT.201804_39(1).0001
張春興(2006)。張氏心理學辭典(重訂版)。台北市:東華。
曹博盛(2016)。八年級學生數學成就及相關因素探討。載於張俊彥(主編),國際數學與科學教育成就趨勢調查2015國家報告(頁205-280)。臺北市:國立臺灣師範大學科學教育中心。
陳敏瑜、游錦雲(2013)。以TIMSS資料檢視能力信念與任務價值對臺灣八年級學生數學成就之影響。教育科學研究期刊,58(3),153-186。
黃嘉莉、葉怡芬、許瑛玿、曾元顯(2017)。取得中學教職的關鍵因素:運用決策樹探勘師資培育歷程。教育科學研究期刊,62(2),89-123。
臺灣PISA國家研究中心(2014)。臺灣PISA2012精簡報告。2014年12月20日。取自http://pisa.nutn.edu.tw/download_tw.htm
鄭永福、許瑛玿(2017)。應用決策樹探索大學以上畢業生薪資之影響因素。教育科學研究期刊,62(2),125-151。
西文部分
Aksoy, E., Narli, S., & Idil, F. H. (2016). Using data mining techniques examination of the middle school students’ attitude towards mathematics in the context of some variables. International Journal of Education in Mathematics Science and Technology, 4(3), 210–228.
Aksu, G., & Güzeller, C. O. (2016). Classification of PISA 2012 mathematical literacy scores using decision-tree method: Turkey sampling. Egitim ve Bilim, 41(185), 101-122.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21stcentury higher education: A review and synthesis. Telematics and Informatics, 37, 13–46.
Alpaydın, E. (2004). Introduction to machine learning. Cambridge: The MIT Press.
Arends, F., Winnaar, L., & Mosimege, M. (2017). Teacher classroom practices and Mathematics performance in South African schools: A reflection on TIMSS 2011. South African Journal of Education, 37(3), 1-11.
Askin, O. E., & Gokalp, F. (2013). Comparing the predictive and classification performances of logistic regression and neural networks: a case study on timss 2011. Procedia-Social and Behavioral Sciences, 106, 667-676.
Bradley, A. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. New York, NY: Chap-man & Hall.
Brese, F. & Mirazchiyski, P. (2010). Measuring students’ family background in large-scale education studies. Paper presented in the 4th IEA International Research Conference. July 1 – 3. Gothenburg, Sweden. Retrieved from http://www.iea.nl/irc-201.html.
Chakrabarti, D., Kumar, R., & Tomkins, A. (2006). Evolutionary clustering. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 554-560).
Chen, J., Zhang, Y., Wei, Y., & Hu, J. (2019). Discrimination of the contextual features of top performers in scientific literacy using a machine learning approach. Research in Science Education. Retrieved from https://doi.org/10.1007/s11165-019-9835-y
Chen, X. W., & Liu, M. (2005). Prediction of protein–protein interactions using random decision forest framework. Bioinformatics, 21(24), 4394-4400.
Cortez, P., & Silva, A. (2008). Using data mining to predict secondary school student performance. In A. Brito & J. Teixeira (Eds.), Proceedings of 5th Annual Future Business Technology Conference (pp. 5–12).
Davis, J., & Goadrich, M. (2006, June). The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning (pp. 233–240).
Dejaeger, K., Goethals, F., Giangreco, A., Mola, L., & Baesens, B. (2012). Gaining insight into student satisfaction using comprehensible data mining techniques. European Journal of Operational Research, 218(2), 548–562.
Depren, S. K., Aşkın, Ö. E., & Öz, E. (2017). Identifying the classification performances of educational data mining methods: A case study for TIMSS. Educational Sciences: Theory & Practice, 17(5), 1605–1623.
Donner, A., & Klar, N. (1996). The statistical analysis of kappa statistics in multiple samples. Journal of Clinical Epidemiology, 49(9), 1053–1058.
Dutt, A., Ismail, M. A., & Herawan, T. (2017). A systematic review on educational data mining. IEEE Access, 5, 15991–16005.
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37-37.
Ferguson, R. (2012). The state of learning analytics in 2012: A review and future challenges. Knowledge Media Institute, Technical Report KMI-2012-01.
Fischer, C., Fishman, B., Dede, C., Eisenkraft, A., Frumin, K., Foster, B., …Levy, A. J. (2018). Investigating relationships between school context, teacher professional development, teaching practices, and student achievement in response to a nationwide science reform. Teaching and Teacher Education, 72, 107-121.
Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59–109.
Fung, F., Tan, C. Y., & Chen, G. (2018). Student engagement and mathematics achievement: Unraveling main and interactive effects. Psychology in the Schools, 55(7), 815-831.
Gabriel, F., Signolet, J., & Westwell, M. (2018). A machine learning approach to investigating the effects of mathematics dispositions on mathematical literacy. International Journal of Research & Method in Education, 41(3), 306–327.
Grønmo, L. S., Lindquist, M., Arora, A., & Mullis, I. V. (2015). TIMSS 2015 Mathematics Framework. In I.V. S. Mullis & M.O. Martin (Eds). TIMSS 2015 Assessment Frameworks (pp.11-27). Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/timss2015/frameworks.html
Hammouri, H. (2004). Attitudinal and motivational variables related to mathematics achievement in Jordan: Findings from the Third International Mathematics and Science Study (TIMSS). Educational research, 46(3), 241-257.
Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
Haykin, S. (1999). Neural Networks: A comprehensive Foundation. Upper Saddle River-N.J.: Prentice Hall International.
He, W. (2013). Examining students’ online interaction in a live video streaming environment using data mining and text mining. Computers in Human Behavior, 29(1), 90–102.
Hooper, M., Mullis, I. V., & Martin, M. O. (2015). TIMSS 2015 context questionnaire framework. In I.V. S. Mullis & M.O. Martin (Eds). TIMSS 2015 Assessment Frameworks (pp.61-82). Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/timss2015/frameworks.html
Hwang, J., Choi, K. M., Bae, Y., & Shin, D. H. (2018). Do teachers’ instructional practices moderate equity in mathematical and scientific literacy? An investigation of the PISA 2012 and 2015. International Journal of Science and Mathematics Education, 16(1), 25-45.
Kalmegh, S. (2015). Analysis of WEKA data mining algorithm REP Tree, Simple CART and Random Tree for classification of Indian news. International Journal of Innovative Science, Engineering & Technology, 2(2), 438-446.
Koedinger, K. R., D′Mello, S., McLaughlin, E. A., Pardos, Z. A., & Rose, C. P. (2015). Data mining and education. Wiley Interdisciplinary Reviews: Cognitive Science, 6(4), 333-353.
Kotsiantis, S., Pierrakeas, C., & Pintelas, P. (2004). Predicting students’ performance in distance learning using machine learning techniques. Applied Artificial Intelligence, 18(5), 411-426.
Kupari, P. (2006). Student and school factors affecting Finnish mathematics achievement: Results from TIMSS 1999 data. Contexts of learning mathematics and science, Lessons learned from TIMSS, 127-14.
Larose, D. T., & Larose, C. D. (2014). Discovering knowledge in data: An introduction to data mining. John Wiley & Sons.
Lee, O. (2005). Science education with English language learners: Synthesis and research agenda. Review of Educational Research, 75(4), 491–530.
Liu, S., & Meng, L. (2010). Re–examining factor structure of the attitudinal items from TIMSS 2003 in cross–cultural study of mathematics self–concept. Educational Psychology, 30(6), 699–712.
Liu, X., & Whitford, M. (2011). Opportunities-to-learn at home: Profiles of students with and without reaching science proficiency. Journal of Science Education and Technology, 20(4), 375-387.
López-Martín, E., Expósito-Casas, E., Molina, E. C., & Muñoz, I. A. (2018). What does PISA tell us about the teaching and learning of sciences? An approach through decision trees. Revista de Educación, 382, 133-161.
Ma, X., & Wang, J. (2001). A confirmatory examination of Walberg′s model of educational productivity in student career aspiration. Educational Psychology, 21(4), 443-453.
Martin, M. O., Mullis, I. V. S., & Hooper, M. (Eds.). (2016). Methods and Procedures in TIMSS 2015. Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/publications/timss/2015-methods.html
Martin, M. O., Mullis, I. V., & Foy, P. (2015). TIMSS 2015 assessment design. In I.V. S. Mullis & M.O. Martin (Eds). TIMSS 2015 Assessment Frameworks (pp.85-98). Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/timss2015/frameworks.html
Masci, C., Johnes, G., & Agasisti, T. (2018). Student and school performance across countries: A machine learning approach. European Journal of Operational Research, 269(3), 1072-1085.
McConney, A., & Perry, L. B. (2010). Socioeconomic status, self-efficacy, and mathematics achievement in Australia: A secondary analysis. Educational Research for Policy and Practice, 9(2), 77-91.
Morgan, P. L., Farkas, G., Hillemeier, M. M., & Maczuga, S. (2009). Risk factors for learning-related behavior problems at 24 months of age: Population-based estimates. Journal of Abnormal Child Psychology, 37(3),401–413.
Mullis, I. V. S., Cotter, K. E., Centurino, V. A. S., Fishbein, B. G., & Liu, J. (2016). Using Scale Anchoring to Interpret the TIMSS 2015 Achievement Scales. In M. O. Martin, I. V. S. Mullis, & M. Hooper (Eds.), Methods and Procedures in TIMSS 2015 (pp. 14.1-14.47). Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timss.bc.edu/publications/timss/2015-methods/chapter-14.html
Mullis, I. V. S., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. Chestnut Hill, MA: Boston College.
Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 international results in mathematics. Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/timss2015/international-results/
Neuschmidt, O., Barth, J., & Hastedt, D. (2008). Trends in gender differences in mathematics and science (TIMSS 1995–2003). Studies in Educational Evaluation, 34(2), 56–72.
Olson, D. L. (2007). Data mining in business services. Service Business, 1(3), 181-193.
Qiao, X., & Jiao, H. (2018). Data mining techniques in analyzing process data: A didactic. Frontiers in psychology, 9, 2231.
Quinlan, J. R. (1994). C4.5 programs for machine learning. San Mateo-California: Morgan Kaufmann Publishers.
Razi, M., & Athappilly, K. (2005). A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Systems with Applications, 29(1), 65–74.
Reynolds, A. J., & Walberg, H. J. (1991). A structural model of science achievement. Journal of educational psychology, 83(1), 97.
Reynolds, A. J., & Walberg, H. J. (1992). A structural model of science achievement and attitude: An extension to high school. Journal of educational Psychology, 84(3), 371.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Schreiber, J. (2002). Scoring above the international average: A logistic regression model of the TIMSS advanced mathematics exam. Multiple Linear Regression Viewpoints, 28(1), 22–30.
Shahiri, A. M., & Husain, W. (2015). A review on predicting student’s performance using data mining techniques. Procedia Computer Science, 72, 414-422.
Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C., & Anthony, M. (1998). Structural risk minimization over data-dependent hierarchies. The Institute of Electrical and Electronics Engineers (IEEE) Transactions on Information Theory, 44(5), 1926-1940.
She, H. C., Lin, H. S., & Huang, L. Y. (2019). Reflections on and implications of the programme for international student assessment 2015 performance of students in Taiwan: The role of epistemic beliefs about science in scientific literacy. Journal of Research in Science Teaching, 56(3), 1-32.
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, Series B (Methodological), 36(2), 111–147.
Topçu, M., Erbilgin, E., & Arıkan, S. (2016). Factors predicting Turkish and Korean students’ science and mathematics achievement in TIMSS 2011. Eurasia Journal of Mathematics, Science and Technology Education, 12(7), 1711–1737.
Turanoğlu-Bekar, E., Ulutagay, G., & Kantarcı-Savaş, S. (2016). Classification of thyroid disease by using data mining models: A comparison of decision tree algorithms. Oxford Journal of Intelligent Decision and Data Sciences, 2016(2), 13–28.
Varshney, P. K., & Arora, M. K. (2004). Advanced image processing techniques for remotely sensed hyperspectral data. Berlin-Heidelberg: Springer Science & Business Media.
Walberg, H. J. (1980). A psychological theory of educational productivity.
Wang, C. L., & Liou, P. Y. (2017). Students’ motivational beliefs in science learning, school motivational contexts, and science achievement in Taiwan. International Journal of Science Education, 39(7), 898-917.
Wang, C. L., & Liou, P. Y. (2018). Patterns of motivational beliefs in the science learning of total, high-, and low-achieving students: Evidence of Taiwanese TIMSS 2011 data. International Journal of Science and Mathematics Education, 16(4), 603-618.
Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82.
Yıldırım, Ö., & Demir, S. B. (2014). The examınatıon of teacher and student effectiveness at TIMSS 2011 Science and math scores using multi level models. Pakistan Journal of Statistics, 30(6), 1211–1218.
Young, D. J., Reynolds, A. J., & Walberg, H. J. (1996). Science achievement and educational productivity: A hierarchical linear model. The Journal of Educational Research, 89(5), 272-278.
Zimmerman, R. K., Balasubramani, G. K., Nowalk, M. P., Eng, H., Urbanski, L., … Wisniewski, S. R. (2016). Classification and regression tree (CART) analysis to predict influenza in primary care patients. BMC Infectious Diseases, 16(1), 503-513. |