博碩士論文 109323064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.226.200.228
姓名 簡伯諺(Po-Yen Chien)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氫氟酸電化學蝕刻碳化矽生成石墨烯奈米顆粒之機制探討
(Study of the Mechanism of Electrochemical etching process of Silicon Carbide using Hydrofluoric Acid)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究將針對氫氟酸電化學蝕刻產生石墨烯奈米顆粒之機制進行探討。以氫氟酸及酒精1:1之比例電化學減薄碳化矽晶圓的過程中我們意外發現了溶液中有光致發光的現象,經過儀器量測後發現有氟化石墨烯奈米顆粒的產生。
同時我們比較氫氧化鉀以及鹽酸蝕刻碳化矽基板後之溶液情形,發現以氫氟酸蝕刻後所生成之石墨烯奈米顆粒的濃度最高。我們以化學鍵能之差異所導致之選擇性蝕刻(Selective etching)之理論解釋此系統機制。
相較於傳統所得到氟化石墨烯奈米顆粒製程,本實驗以所得到之氟化石墨烯奈米顆粒利用XPS所量測的氟化比例非常高,極有潛力應用至能源、醫療、以及光學領域當中。
此機制之特點為我們不僅能夠利用電化學蝕刻快速減薄碳化矽,且蝕刻後之蝕刻液能夠經由萃取產生可使用之氟化石墨烯奈米顆粒,顯示我們可以從單一製程獲得雙重產物,進而實現綠色化學製程。同時我們認為此機制能夠進一步的應用至工業製程中。
摘要(英) In the study, we discuss the mechanism of graphene nanoparticles fabricated from Hydrofluoric acid etching Silicon carbide by electrochemical process. Using the solution of Hydrofluoric acid and Ethanol with 1:1 volume percentage to etch Silicon Carbide substrate, we accidentally found out that the etchant shown the phenomenon of Photoluminescence after the process. With a series of detection, we discover that the etchant consist of fluorinated graphene nanoparticles.
We also applied KOH and HCl as etchant to the system. By comparison, using HF as etchant shows higher concentration of graphene nanoparticles. We explain the mechanism of the phenomenon by selective etching.
Compare to conventional fluorinated process, the graphene nanoparticles in our experiment has a higher fluorinated rate, which indicates a promising application in various fields, such as energy, medical, and optical field.
The value of the experiment is that not only the electrochemical process can thinning the SiC substrate, but the etchant is also applicable after extraction. Which shows that the process meets the standard of green chemistry, and the process is also multi-function. We look forward to introduce the process to the real approach.
關鍵字(中) ★ 碳化矽
★ 石墨烯
★ 電化學蝕刻
★ 奈米顆粒
★ 選擇性蝕刻
關鍵字(英) ★ Silicon Carbide
★ Graphene
★ Electrochemical etching
★ Nano particle
★ Nelective etching
論文目次 摘要 ii
Abstract iii
誌謝 iv
目錄 v
圖目錄 x
表目錄 xiii
第一章 緒論 1
2-1 研究背景 1
2-1-2 石墨烯奈米顆粒 1
1-2 研究動機與目標 3
第二章 文獻回顧 4
2-1 碳化矽之性質以及應用 4
2-2 半導體的電化學蝕刻 5
2-4 石墨烯磊晶之技術 6
2-4-1 化學氣相沉積技術 6
2-4-2 碳化矽高溫磊晶技術 7
2-5 石墨烯奈米顆粒 7
2-5-1 尺寸效應(Size effect) 8
2-5-2 邊緣效應(Edge effect) 8
2-6 石墨烯奈米顆粒之製備 8
2-6-1 生長法(Bottom up methods) 9
2-6-2 削減法(Top down methods) 10
2-7 石墨烯奈米顆粒之應用 11
2-7-1 醫學領域 12
2-7-2 光學領域 12
2.7.3能源領域 12
2-8 石墨烯之改質技術 12
2-8-1 氧化石墨烯 13
2-8-2 氟化石墨烯 13
2-9選擇性蝕刻 15
2-10 化學鍵與能量關係 15
第三章 實驗方法 16
3-1 實驗系統與分析儀器 16
3-2 實驗步驟 17
3-2-1 不同電流之蝕刻 19
3-2-2 不同溶液的蝕刻 20
3.3 實驗檢測儀器 20
3-1-2 光致發光頻譜(Photoluminenscene, PL): 22
3-1-3 雙束型聚焦離子束(Focus ion beam,FIB) 23
3-1-4 高解析穿透式電子顯微鏡(HR-TEM): 24
3-1-5 能量色散X射線譜(Energy-dispersive X-ray spectroscopy,EDS) 25
3-1-6 X光繞射分析儀 (X-ray Diffractometer) 26
3-1-7 拉曼光譜儀(Raman) 27
3-1-8 X射線光電子能譜儀(X-ray photoelectron spectroscopy XPS) 28
第四章 結果與討論 29
4-1 蝕刻後之現象觀測 29
4-2 粉末之XRD量測 31
4-3 溶液顆粒之光致發光頻譜 33
4-4 溶液顆粒之TEM分析 35
4-5 粉末之成分分析 37
4-6 奈米顆粒之拉曼光譜 37
4-7 不同電流對石墨烯奈米顆粒的尺寸影響 39
4-8 試片表面殘留碳之TEM 40
4-9 XPS對石墨烯奈米顆粒之分析 45
4-10 不同溶液對碳化矽的蝕刻 47
4-10-1 氫氟酸與鹽酸蝕刻後之比較 47
4-11 蝕刻機制探討 52
4-12 結果應用 54
4-12-1 綠色製程高氟化率之氟化石墨烯 54
4-12-2 應用於大面積石墨烯生成 54
第五章 結論 58
研究歸納 58
5-1 未來展望 58
第六章 參考文獻 59
參考文獻 [1] Novoselov, K., et al. (2004). "Electric Field Effect in Atomically Thin Carbon Films." Nat. Mater. 6.

[2] Tajik, S., et al. (2020). "Carbon and graphene quantum dots: A review on syntheses, characterization, biological and sensing applications for neurotransmitter determination." RSC Advances 10: 15406-15429.

[3] 科儀新知第二十四卷第四期 92.2

[4] Dao, C., et al. (2009). "Effect of electrochemical etching solution composition on properties of porous SiC film." Journal of Physics: Conference Series 187.

[5] Zaretski, A. and D. Lipomi (2015). "Processes for non-destructive transfer of graphene: Widening the bottleneck for industrial scale production." Nanoscale 7.

[6] Shtepliuk, I., et al. (2016). "Combining graphene with silicon carbide: Synthesis and properties - A review." Semiconductor Science and Technology 31: 113004.

[7] Zheng, X., et al. (2014). "Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications." Small 11.

[8] Kittiratanawasin, L. and S. Hannongbua (2016). "The effect of edges and shapes on band gap energy in graphene quantum dots." Integrated Ferroelectrics 175: 211-219.

[9] Nakano, H., et al. (2018). "Chemical modification of group IV graphene analogs." Science and Technology of Advanced Materials 19: 76-100.

[10] Feng, W., et al. (2016). "Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications." Advanced Science 3: n/a-n/a.

[11] Ho, K.-I., et al. (2014). "Fluorinated Graphene as High Performance Dielectric Materials and the Applications for Graphene Nanoelectronics." Scientific reports 4: 5893.


[12] Su, M., et al. (2018). "Effect of Hydrofluoric Acid Etching on Performance of Si/C Composite as Anode Material for Lithium-Ion Batteries." Journal of Nanomaterials 2018: 1-6.

[13] (2019). Bond Strength and Energy.

[14] Siburian, R., et al. (2018). "New Route to Synthesize of Graphene Nano Sheets." Oriental Journal of Chemistry 34: 182-187.


[15] Raji, N., et al. (2017). "Rapid, Acid-Free Synthesis of High-Quality Graphene Quantum Dots for Aggregation Induced Sensing of Metal Ions and Bioimaging." ACS Omega 2.

[16] Wan, L., et al. (2018). "Quality evaluation of homopetaxial 4H-SiC thin films by a Raman scattering study of forbidden modes." Optical Materials Express 8: 119.

[17] Van Dorp, D., et al. (2007). "Anodic etching of SiC in alkaline solutions." J. Micromech. Microeng 17: 50-55.

[18] Rysy, S., et al. (1999). "Electrochemical etching of silicon carbide." Journal of Solid State Electrochemistry 3: 437-445.

[19] Tsai, H.-S., et al. (2014). "Scalable Graphene Synthesized by Plasma-Assisted Selective Reaction Process on Silicon Carbide for Device Application." Nanoscale 6.
指導教授 李天錫(Lee, Benjamin Tien-Hsi) 審核日期 2021-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明