博碩士論文 108521003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.223.107.178
姓名 張懷言(Huai-Yen Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 金屬-絕緣層-p 型氮化鎵增強型高電子遷移率電晶 體之研究
(Investigation of Metal-Insulator-p GaN EnhancementMode High Electron Mobility Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對金屬/絕緣層/p 型氮化鎵增強型高電子遷移率電晶體結構,使用三種不同絕緣層和Sample A的金屬/p 型氮化鎵增強型高電子遷移率電晶體比較,絕緣層分別是Sample B的氧化鋁、Sample C的氧化鉿加氧化鋁和Sample D的氧化鋯加氧化鋁,探討其元件特性之差異及其可能之原因。元件直流特性方面,相較於金屬/p 型氮化鎵元件的臨界電壓為 0.6 V,三種金屬/絕緣層/p 型氮化鎵元件的臨界電壓均為 0.9 V,主要是因為當元件的閘極施加正偏壓時,會有壓降在絕緣層產生,需要施加更大的柵極電壓才能使通道導通,可是加入絕緣層使閘極電容降低,也犧牲了元件在閘極電壓為 6 V時的飽和電流。此外,Sample A、Sample B、Sample C和Sample D的閘極崩潰電壓則分別為10.6 V、14 V、13.4 V、12.9 V,顯示絕緣層的存在降低了電洞在閘極端的穿隧行為,進而抑制閘極端崩潰。在元件的動態特性方面,使用不同偏壓下的脈衝量測,發現沉積絕緣層引起了更嚴重的臨界電壓偏移。雙向和變頻的 C-V 量測除了觀察遲滯效應的存在,也估算了元件的界面能態密度,Sample A 的界面能態密度為 7.9 × 1011eV-1;Sample B
為 2.8 × 1012eV-1;Sample C 為 3.1 × 1012cm-2eV-1;Sample D 為 3.2 × 1012cm-2eV-1,可以發現當沉積絕緣層時界面能態密度的增加。
摘要(英) This research is aimed at metal/insulator/p-GaN gate enhancement-mode high electron mobility transistors (HEMTs) to reduce gate leakage current at high gate bias conditions. In this work, a Schottky p-GaN gate HEMT (Sample A) was fabricated as the reference. HEMTs with three different gate insulators, i.e. Al2O3 (Sample B), HfOx+Al2O3 (Sample C), and ZrO2+Al2O3 (Sample D), were investigated and compared. Possible reasons for the different characteristics between these samples were also given.
Compared with the metal/p-GaN device (Sample A), which has a threshold voltage of 0.6 V, the three metal/insulator/p-GaN devices (Sample B, C, and D) exhibit the same threshold voltage of 0.9 V. This is attributed to the additional voltage drop on the insulator layer, and a larger gate voltage is needed to turn on the channel. However, adding an insulator layer to the p-GaN layer results in the reduction of gate capacitance, and thus the saturation current at a gate voltage of 6 V. In addition, while the gate breakdown voltage of the metal/p-GaN device is 10.6 V, those of the devices with Al2O3, HfOx+Al2O3, and ZrO2+Al2O3 insulators are 14 V, 13.4 V, and 12.9 V, respectively. This shows that the insulator layer effectively reduces the tunneling of holes at the gate terminal, thereby preventing the gate terminal from collapsing. The dynamic characteristics of the devices evaluated by pulsed measurements under different bias voltages indicated that the deposition of the insulator layer causes a more significant threshold voltage shift. The bidirectional sweep and variable frequency capacitance-voltage measurements show the existence of the hysteresis effect, which are used to estimate the interface state density. The interface state density of Sample A, B, C, and D is 7.9×1011 cm-2 eV-1, 2.8×1012 cm-2 eV-1, 3.1×1012 cm-2 eV-1, and 3.2×1012 cm-2 eV-1, respectively. This work shows that adding an insulator to the p-GaN gate increases the threshold voltage and breakdown voltage at the expenses of drain current and threshold voltage shift.
關鍵字(中) ★ 氮化鎵
★ 絕緣層
★ p 型氮化鎵
★ 氧化鋁
★ 氧化鉿加氧化鋁
★ 氧化鋯加氧化鋁
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viiii
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 氮化鎵材料與元件概述 3
1.2.1 氮化鎵極化效應 3
1.2.2 增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體 5
1.3 研究動機與論文架構 11
第二章 元件製程 12
2.1 前言 12
2.2 儀器介紹 12
2.3 元件製程流程 14
第三章 元件特性分析 20
3.1 前言 20
3.2 能帶模擬分析 20
3.3 直流特性分析 25
3.4 崩潰特性分析 28
3.5 動態特性分析 31
3.6 C-V特性分析 39
3.7 結論 44
第四章  結論與未來展望 45
參考文獻 46
參考文獻 [1] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser, "High breakdown voltage schottky rectifier fabricated on bulk n-GaN substrate," Solid-State Electronics, Vol. 50, pp. 1744-1747, 2006.
[2] Yole Developpement, "Power GaN 2019: Epitaxy, Devices, Applications and Technology Trends report," Nov. 2019.
[3] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures," Journal of Applied Physics, Vol. 85, No. 6, pp. 3222-3233, 1999.
[4] Ruopu Zhu, Qi Zhout, A. Zhang, Y. Shi, Z. Wang, L. Liu, B. Chen, Y. Jin, Wanjun Chen, and Bo Zhang, "High Performance Normally-off Al2O3/GaN MOSFETs with Record High Threshold Voltage by Interface Charge Engineering," IEEE International Conference on Solid-State and Integrated Circuit Technology, Nov. 2013.
[5] Y. Cai, Y. Zhou, Kevin J. Chen, and K. M. Lau, "Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode," IEEE Electron Device Letters, Vol. 53, No. 9, Sep. 2006.
[6] Xiucheng Huang, Zhengyang Liu, Qiang Li, and Fred C. Lee, "Evaluation and Application of 600V GaN HEMT in Cascode Structure," IEEE Transactions on Power Electronics, Vol. 29, No. 5, May 2014.
[7] Nadim Chowdhury, Jori Lemettinen, Qingyun Xie, Yuhao Zhang, Nitul S. Rajput, Peng Xiang, Kai Cheng, Sami Suihkonen, Han Wui Then, and Tomás Palacios, "p-Channel GaN Transistor based on p-GaN/AlGaN/GaN on Si," IEEE Electron Device Letters, Vol. 40, No. 7, July 2019.
[8] Liang-Yu Su, Finella Lee, and Jian Jang Huang, "Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a p-Type GaN Cap Layer," IEEE Transactions on Electron Devices, Vol. 61, No. 2, Feb. 2014.
[9] Matteo Meneghini, Oliver Hilt, Joachim Wuerfl and Gaudenzio Meneghesso, "Technology and Reliability of Normally-Off GaN HEMTs with p-Type Gate," MDPI, Jan. 2017.
[10] Injun Hwang, Jongseob Kim, Hyuk Soon Choi, Hyoji Choi, Jaewon Lee, Kyung Yeon Kim, Jong-Bong Park, Jae Cheol Lee, Jongbong Ha, Jaejoon Oh, Jaikwang Shin, and U-In Chung, "p-GaN Gate HEMTs With Tungsten Gate Metal for High Threshold Voltage and Low Gate Current," IEEE Electron Devices Letters, Vol. 34, No. 2, Feb. 2013.
[11] Taofei Pu, Xiao Wang, Qian Huang, Tong Zhang, Xiaobo Li, Liuan Li, and Jin-Ping Ao, "Normally-Off AlGaN/GaN Heterojunction Metal-Insulator-Semiconductor Field-Effect Transistors With Gate-First Process," IEEE Electron Devices Letters, Vol. 40, No. 2, Feb. 2019.
[12] L. Wang, F. M. Mohammed, and I. Adesida, "Differences in the reaction kinetics and contact formation mechanisms of annealed Ti/Al/Mo/Au ohmic contacts on n-GaN and 116 AlGaN/GaN epilayers," J. Appl. Phys., Vol. 101, No. 1, Jan. 2007.
[13] C. Wang, S.-J. Cho, and N.-Y. Kim, "Optimization of ohmic contact metallization process for AlGaN/GaN high electron mobility transistor," Trans. Electr. Electron. Mater., Vol. 14, No. 1, Feb. 2013.
[14] Yaopeng Zhao, Chong Wang, Xuefeng Zheng, Xiaohua Ma, Kai Liu, Ang Li, Yunlong He, and Yue Hao, "Comparative Study on Characteristics of Si-based AlGaN/GaN Recessed MIS-HEMTs with HfO2 and Al2O3 Gate Insulators," Chinese Physics B, Vol. 29, No. 8, 2020.
[15] Y. F. Dong, S. J. Wanga, J. W. Chai, Y. P. Feng, and A. C. H. Huan, "Impact of interface structure on Schottky-barrier height for Ni/ZrO2(001) interfaces," AIP, Letters 86, March 2005.
[16] Se-Man Oh, Hee-wook You, Kwan-Su Kim, Young-Hie Lee, and Won-Ju Cho, "Electrical properties of HfO2 charge trap flash memory with SiO2/HfO2/Al2O3 engineered tunnel layer," Current Applied Physics, Vol.10, Issue 1, Jan. 2010.
[17] J. W. Liu, M. Y. Liao, M. Imura, and Y. Koide, "High-k ZrO2/Al2O3 bilayer on hydrogenated diamond: Band configuration, breakdown field, and electrical properties of field-effect transistors," AIP, Vol. 120, Issue 12, Sep. 2016.
[18] Hideyuki Hanawa, Hiraku Onodera, Atsushi Nakajima, and Kazushige Horio, "Numerical Analysis of Breakdown Voltage Enhancement in AlGaN/GaN HEMTs With a High-k Passivation Layer," IEEE Transactions on Electron Devices, Vol. 61, No. 3, March 2014.
[19] A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras, P. Veit, T. Riemann, F. Bertram, A. Reiher, A. Krtschil, A. Diez, T. Hempel, T. Finger, A. Kasic, M. Schubert, D. Bimberg, F. A. Ponce, J. Christen, and A. Krost, "Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon," Physica Status Solidi C, Vol. 0, No. 6, April 2003.
[20] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, "Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors," AIP, Vol.77, No. 2, March 2000.
[21] Tamotsu Hashizumea, Kenya Nishiguchia, Shota Kanekia, Jan Kuzmikb, and Zenji Yatabec, "State of the art on gate insulation and surface passivation for GaN-based power HEMTs," Materials Science in Semiconductor Processing, Vol. 34, Pages 85-95, May 2018.
[22] Bell Laboratories, Lucent Technologies, 600 Mountain Ave., and Murray Hill, "Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors," Superlattices and Microstructures, Vol. 34, Issues 1-2, Dec. 2003.
[23] Shu Yang, Sen Huang, Michael Schnee, Qing-Tai Zhao, Jürgen Schubert, and Kevin J. Chen, "Fabrication and Characterization of Enhancement-Mode High-K LaLuO3-AlGaN/GaN MIS-HEMTs," IEEE Transactions on Electron Devices, Vol. 60, No. 10, Oct. 2013.
[24] Ramakrishna Vetury, Naiqain Q. Zhang, Stacia Keller, and Umesh K. Mishra, "The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN HFETs," IEEE Transactions on Electron Devices, Vol. 48, No. 3, March 2001.
[25] Baikui Li, Xi Tang, Hui Li, Hamid Amini Moghdam, Zhaofu Zhang, Jisheng Han, Nam-Trung Nguyen, Sima Dimitrijev, and Jiannong Wang, "Impact of Carrier Injections on the Threshold Voltage in p-GaN Gate AlGaN/GaN Power HEMTs," IOP Science, Vol. 12, No. 6, May 2019.
[26] Gaofei Tang, M.-H. Kwan, R.-Y. Su, F.-W. Yao, Y.-M. Lin, J.-L. Yu, Thomas Yang, Chan-Hong Chern, Tom Tsai, H. C. Tuan, Alexander Kalnitsky, and Kevin J. Chen, "High-Capacitance-Density p-GaN Gate Capacitors for High-Frequency Power Integration," IEEE Electron Device Letters, Vol. 39, Issue 9, Sep. 2018.
[27] R. Winter, J. Ahn, P. C. Mclntyre, and M. Eizenberg, "New method for determining flat-band voltage in high mobility semiconductors," J. Vac. Sci. Technol. B, Vol. 31, No. 3, April 2013.
[28] Sen Huang, Qimeng Jiang, Shu Yang, Zhikai Tang, and Kevin J. Chen, "Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges," IEEE Electron Device Letters, Vol. 34, No. 2, Feb. 2013.
[29] Jie-Jie Zhu, Xiao-Hua Ma, Yong Xie, Bin Hou, Wei-Wei Chen, Jin-Cheng Zhang, and Yue Hao, "Improved Interface and Transport Properties of AlGaN/GaN MIS-HEMTs With PEALD-Grown AlN Gate Dielectric," IEEE Transactions on Electron Devices, Vol. 62, No. 2, Feb. 2015.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2021-9-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明