以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:34 、訪客IP:3.149.239.236
姓名 陳韋均(Wei-Jun Chen) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 基於邊緣運算之互聯微電網電力調度控制策略
(Power Dispatching Control Strategy of Interconnected Microgrid Based on Edge Computing)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 在政府推動再生能源的發展下間接讓儲能設備的應用範圍更加
廣泛, 而一些偏鄉地區 也設置了由分散式發電與儲能設備 組 成的防災
型微電網作為緊急用電,但再生能源有發電不穩定之缺點,可能間接
導致該區域沒電可用,而本論文 旨在透過電力調度讓多個微電網可以
共同延長用電支撐時間 ,提出基於邊緣運算之互聯微電網 電力調度控
制策略,在儲存電力百分比數較高的微電網通過電力線給予電量給儲
存電力百分比數較低的微電網,並搭配需量管理在適當剩餘電量下進
行卸載動作,藉以達成在孤島狀態下整個互連微電網系統能維持更長
久的時間,並且採用邊緣運算架構讓整個互聯微電網系統死機的機率
降低 。
本文模擬採用美國國家儀器公司所開發之模擬軟體
Labview來
模擬本文電力調度策略的可行性。在實作部分,將演算法寫入由英國
樹莓派基金會開發的樹莓派 本文負載場域為位於中央大學內之
白色能源屋 ,使用 Python撰寫演算法,並最終驗證演算法之可靠性。摘要(英) Under the government’s promotion of renewable energy development, the application range of energy storage equipment has been indirectly expanded. Some rural areas have also set up disaster-prevention microgrids composed of decentralized power generation and energy storage equipment as emergency power. However, renewable energy has the shortcomings of unstable power generation may indirectly lead to no electricity available in this area.This paper aims to allow multiple microgrids to jointly extend the power support time through power dispatch, and proposes an interconnected microgrid power dispatch control strategy based on edge computing.The microgrid with a higher percentage of stored electricity uses the power line to give electricity to the microgrid with a lower percentage of stored electricity, and it is used with demand management to perform offloading with appropriate remaining electricity to achieve the entire interconnected microgrid system in an island state. It can last longer, and the edge computing architecture is used to reduce the probability of crashes of the entire interconnected microgrid system.
This paper uses the simulation software Labview developed by National Instruments to simulate the feasibility of this paper′s power dispatch strategy. In the implementation part, the algorithm is written into the Raspberry Pi 3B+ developed by the British Raspberry Pi Foundation, the operating system is Raspbian, the algorithm is written in Python, and the reliability of the algorithm is finally verified.關鍵字(中) ★ 孤島微電網
★ 邊緣運算
★ 需量管理
★ 電力調度策略關鍵字(英) ★ Islanded microgrid settlement
★ edge computing,
★ demand management
★ power dispatching strategy論文目次 目錄
論文摘要
I
ABSTRACT II
目錄 V
圖目錄
VIII
表目錄
XIV
第一章
緒論 1
1-1 研究背景 1
1-2 研究方法及目的 3
1-3 論文大綱 7
第二章
微電網與電力調度架構 8
2-1 微電網電力系統架構 8
2-1-1 具有通訊之控制策略 8
2-1-2 併網狀態下之微電網電力系統架構 9
2-1-2 互聯孤島微電網之電力系統架構 11
2-2 電力資料處理架構 12
2-2-1 集中式運算架構 12
2-2-2 分散式運算架構 13
2-2-3 集中式與分散式運算架構比較集中式與分散式運算架構比較 .................................................................................... 14
2-2-4 基於邊緣運算下互聯微電網之基於邊緣運算下互聯微電網之網路網路架構架構 .................................................... 16
第三章
第三章 互聯微電網之電力調度策略互聯微電網之電力調度策略 ........................................................................................................ 17
3-1 電力調度策略電力調度策略 .......................................................................................................................................................... 17
3-1-1 電力調度演算法電力調度演算法 .................................................................................................................................... 20
3-2 互聯微電網電力調度資料依據互聯微電網電力調度資料依據 .................................................................................................. 24
3-3 需量管理策略需量管理策略 .......................................................................................................................................................... 25
3-4 基於邊緣運算下之時間同步處理基於邊緣運算下之時間同步處理 .......................................................................................... 30
第四章
第四章 電力調度策略模擬結果電力調度策略模擬結果 ........................................................................................................................ 32
4-1 互聯微電網電力調度策略模擬結果互聯微電網電力調度策略模擬結果 .................................................................................. 34
4-2 情境一:正常調度結果情境一:正常調度結果 .......................................................................................................................... 35
4-3 情境二:情境二:低太陽能發電之調度結果低太陽能發電之調度結果 .................................................................................. 42
4-4 情境三:高太陽能發電及全天高負載用電情境三:高太陽能發電及全天高負載用電 .......................................................... 51
4-5 情境四:各微電網用戶用電習慣不同結果情境四:各微電網用戶用電習慣不同結果 .......................................................... 58
4-6 情境五:用戶用電量驟升之結果情境五:用戶用電量驟升之結果 .......................................................................................... 64
4-7 電力調度監控平台電力調度監控平台 .......................................................................................................................................... 72
第五章
第五章 結論及未來研究方向結論及未來研究方向 ................................................................................................................................ 74
5-1 結論結論............................................................................................................................................................................................ 74
5-2 未來研究方向未來研究方向 .......................................................................................................................................................... 75
參考文獻
參考文獻 ...................................................................................................................................................................................................... 76參考文獻 [1] Q. Wang, Y. Guan and J. Wang, “A Chance-Constrained Two-Stage Stochastic Program for Unit Commitment With Uncertain Wind Power Output”, IEEE Transactions on Power Systems, Vol. 27, No. 1 , February 2012,pp.206-215. [2] 周桂蘭 ,「 2019 年全球再生能源現況報告 ─再生能源發電新增裝
置容量已超越化石燃料及核能的新增裝置容量,成為近幾年全球
發電的主流」,工業技術研究院綠能與環境研究所,民國 108年。
[3] Daniel E. Olivares, Ali Mehrizi-Sani, Amir H. Etemadi, Claudio A. Cañizares, Reza Iravani, Mehrdad Kazerani, Amir H. Hajimiragha, Oriol Gomis-Bellmunt, Maryam Saeedifard, Rodrigo Palma-Behnke, Guillermo A. Jiménez-Estévez, Nikos D. Hatziargyriou, “ Trends in Microgrid Control”, IEEE Transactions on Smart Grid, Vol. 5, No. 4, July 2014,pp.1905-1919. [4] Xin Chen, Yan Hong Wang, Yun Cheng Wang, “ A Novel Seamless Transferring Control Method for Microgrid Based on Master-Slave Configuration”, 2013 IEEE ECCE Asia Downunder, 16 August 2013.
[5] 「電力數據動態圖表」,台灣電力公司,民國 109年 。
[6] Okan Ciftci, Mahdi Mehrtash and Amin Kargarian,” Data-Driven Nonparametric Chance-Constrained Optimization for Microgrid Energy Management”, IEEE Transactions on Industrial Informatics, Vol. 16, NO. 4, April 2020,pp.2447-2457.
[7] Donglan Liu* , Xin Liu, Hao Yu, Wenting Wang, Xiaohong Zhao, Yang Zhao, Hao Zhang, Lei Ma, Dong Li, Qiying Li,” Research on Technology Application and Security Threat of Internet of Things for Smart Grid”, 2018.5th International Conference on Information Science and Control Engineering,pp.496-499 [8] T. Remani, E.A. Jasmin, T.P. Imthias Ahamed,” Residential Load Scheduling With Renewable Generation in the Smart Grid: A Reinforcement Learning Approach”, IEEE Systems Journal, Vol. 13, No. 3, September 2019,pp.3283-3294 [9] Brandon S. England and Ali T. Alouani,” Multiple Loads-Single Smart Meter for Measurement and Control of Smart Grid”, 2019 IEEE PES Innovative Smart Grid Technologies Asia,pp.2440-2444.
[10] Stefano Rinaldi et al,”Characterization of IP-Based Communication for Smart Grid Using Software-Defined Networking”, IEEE Transactions on Instrumentation and Measurement, Vol. 67, No. 10, October 2018,pp.2410-2419
[11]Mohammad Hossein Yaghmaee and Hossein Hejazi,” Design and Implementation of an Internet of Things Based Smart Energy Metering”, 2018 the 6th IEEE International Conference on Smart Energy Grid Engineerin,pp.191-194
[12] B. K. Barman, S. N. Yadav, S. Kumar and S. Gope,”IOT Based Smart Energy Meter for Efficient Energy Utilization in Smart Grid”,2018 2nd
International Conference on power, Energy and Environment: Towards Smart Technology(ICEPE),Shillong,India,2018,pp.1-5.
[13] 林繼駿,「微電網之儲能系統應用簡介」,台灣 ESCO會訊第三十
三期, 2013年。
[14] Andres Salazar, Alberto Berzoy, Wenzhan Song and d Javad Mohammadpour,”Energy Management of Islanded Nanogrids Through Nonlinear Optimization Using Stochastic Dynamic Programming”, IEEE Transactions on Industry Applications, Vol. 56, No. 3, May/June 2020,pp.2129-2137
[15] Chihchiang Hua and Chihming Shen,” Control of DC/DC Converters for Solar Energy System with Maximum Power Tracking”, Proceedings of the IECON′97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066), 14-14 Nov. 1997.
[16] Zehuai Liu et al.,” Optimal planning and operation of dispatchable active power resources for islanded multi-microgrids under decentralised collaborative dispatch framework”, IET Gener. Transm. Distrib., 2020, Vol. 14 Iss. 3, pp. 408-422
[17] Universal PCS Modbus TCP map ,April 3 2020
[18] Kenneth D. Frampton, Oliver N. Baumann, and Paolo Gardonio,” A comparison of decentralized, distributed, and centralized vibro-acoustic control”, 2010 Acoustical Society of America,pp. 2798-2806.
[19]Blesson Varghese et al.,” Challenges and Opportunities in Edge Computing”, 2016 IEEE International Conference on Smart Cloud,
pp. 20-26.
[20] Jasenka Dizdarevic and Admela Jukan,” Engineering an IoT-Edge-Cloud Computing System Architecture: Lessons Learnt from An Undergraduate Lab Course”, eprint arXiv:2103.11396, March 2021.
[21] 藍建凱 ,,”多半區間創儲耗能最佳微電往能源管理控制策略 博
士論文,國立彰化師範大學,民國 109年 。
[22] Yu Wang et al.,” Peer-to-Peer Control for Networked Microgrids: Multi-Layer and Multi-Agent Architecture Design”, IEEE Transactions on Smart Grid,pp. 4688-4699, July 2020. [23] Annette Werth et al.,” Peer-to-Peer Control System for DC Microgrids”, IEEE Transactions on Smart Grid,pp.3667-3675, December 2016.指導教授 陳正一(Cheng-I Chen) 審核日期 2021-9-24 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare