以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:83 、訪客IP:3.15.228.162
姓名 林睿智(JUI-CHIH LIN) 查詢紙本館藏 畢業系所 機械工程學系在職專班 論文名稱 使用3D列印耐候材料製作小型衛星地面站結構之研究
(A Research on 3D Printing Weather Resistant Material Prints Very Small Aperture Terminal Structure)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2025-10-15以後開放) 摘要(中) 如今3D(Three Dimensional)列印技術非常成熟,3D列印材料中丙烯腈-苯乙烯-丙烯酸酯共聚合物(Acrylonitrile Styrene Acrylate, ASA)與常見的丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile Butadiene Styrene, ABS)相似。保留原始ABS的機械性質,ASA具有抗紫外線照射引起的老化現象,提升了材料的抗老化與耐侯特性,因此ASA常用於需要長期在戶外使用的產品或零件。Very Small Aperture Terminal(VSAT)碟型天線的安裝需要長期安裝於戶外環境,3D列印時常運用於樣品設計或小量生產取代模具開發與修改的費用。藉此達到產品輕量化與降低成本之目標,並且配合具有耐候性的3D列印材料,確保在戶外環境的使用壽命。本文結合3D列印技術與ASA線材進行田口方法分析,得到其材料的彈性模數。後續利用有限元素法進行VSAT天線強度的分析,確保以ASA線材所列印出的天線零件樣品達到強度標準,天線指向偏移0.4°以內。
綜合上述,本研究利用熔融沉積成型技術,主要內容分為三部分。第一部分是以ASA線材,藉由3D列印設備的參數調整獲得最佳之彈性模數。第二部分為3D列印材料之耐候特性之探討,將不同材料列印出的試片進行三百小時的耐人工氣候加速戶外檢驗測試,模擬氣候腐蝕,到達制定時間後進行材料抗拉強度測試。第三部分利用有限元素法以ASA材料所設計的VSAT零件進行強度分析。確認天線設計有達到強度標準後,進行實際之樣品3D列印。3D列印之天線樣品重量與原先鐵材所設計之天線設計減少35%,且以模擬風洞測試之方式檢測天線強度於標準之內。最後,提出可能改進的建議及未來之應用。摘要(英) Nowadays, 3D (Three Dimensional) printing is a mature technology. ASA’s(Acrylonitrile Styrene Acrylate) mechanical properties is similar to ABS’s(Acrylonitrile Butadiene Styrene). In addition, ASA has been performed ultraviolet resistance and resisted decomposition caused by high temperature in the atmospheric oxidation process. ASA has been improved aging resistance and weather resistance compare with ABS. Therefore, ASA is usually suitable for products that are used outdoors for a long time. VSAT(Very Small Aperture Terminal) antenna needs to be installed in an outdoor environment for a long time. In the field of communication equipment, 3D printing is used to replace the cost of mold development and modification, sample design or small-batch production. Communication equipment takes advantage of 3D printing to reduce the cost and lightweight. Besides, 3D printing with weather resistance material increases of service life during an outdoor environment. This paper used Taguchi method analysis to obtain the ASA′s elastic modulus in 3D printing. Then it analyzed the strength of VSAT antenna with finite element method. The standard is antenna pointing deviation within 0.4°.
In summary, this research used fused deposition modeling(FDM) technology with ASA. This paper have been divided into three parts: First of all, using 3D printing with ASA material printed samples which can get the best elastic modulus by parameters of the 3D printing equipment. The second part is the discussion of the weather resistance of 3D printing materials. The different material samples were going to do 300 hours of artificial weather resistance test which simulate outdoor climate corrosion. After the time is reached, samples are tested the tensile strength and compare with the original samples. The third part is the strength analysis of the VSAT antenna with ASA material using finite element method. After confirming the antenna structure design, it will be produced by 3D printing. The weight of the 3D printed antenna structure sample is reduced by 35% compared with the original design which material is iron. Furthermore, 3D printed sample’s strength is within the standard level. Finally, recommending improvements and future applications.關鍵字(中) ★ 積層製造
★ 熔融沉積成型
★ 田口方法
★ VSAT碟型天線
★ 有限元素法關鍵字(英) ★ ASA
★ Additive Manufacturing
★ Fused Deposition Modeling
★ Taguchi Method
★ VSAT
★ Finite Element Method論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 vii
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-3研究動機與目的 9
1-4論文架構 10
第二章 理論說明 12
2-1積層製造技術 12
2-2材料性質檢測 14
2-3 田口實驗設計 16
2-4 小型衛星地面站(VSAT)系統與檢測 20
2-5 有限元素法 25
第三章 研究方法 26
3-1實驗材料與規格 26
3-2拉伸試驗之實驗流程與規劃 28
3-3 ASA線材於積層製造的田口方法實驗參數 28
3-4 ASA線材耐候性量測 31
3-5 天線結構強度量測實驗方法 32
第四章 實驗結果與討論 40
4-1 ASA積層製造最佳化實驗結果 40
4-2 ASA列印試片耐候性測試結果 42
4-3 天線模型有限元素分析結果 44
4-4 3D列印天線模型模擬風負載強度實驗結果 48
第五章 結論與未來展望 49
5-1 結論 49
5-2 未來展望 49
參考文獻 51參考文獻 [1] Imre Horváth and Dong-Yol Yang, "Rapid technologies: solutions for today and tomorrow", Computer-Aided Design, Vol. 34, pp. 679-682, 2002.
[2] 邱衛美、田治,「ASA樹脂及其合金的性能與應用」,塑料工業,36(7), 53-55頁,2008。
[3] 國家化學建築材料測試中心,「ASA/PVC彩色共擠門窗型材」,國家化學建築材料測試中心,2008。
[4] Greg Heifner, "Introduction to VSAT technology ", Orbital Data Net, pp. 24-27, 2004.
[5] John Scheirs and Duane Priddy, Modern Styrenic Polymers: Polystyrenes and Styrenic Copolymers, John Wiley & Sons, Inc., New York, 2003.
[6] Sofiane Guessasma, Sofiane Belhabib and Hedi Nouri, "Microstructure thermal and mechanical behavior of 3D printed Acrylonitrile Styrene Acrylate", Macromolecular Materials and Engineering, Vol. 304, 1800793, 2019.
[7] Mohammad Reza Khosravani, Ali Zolfagharian, Matt Jennings and Tamara Reinicke, "Structural performance of 3D-printed composites under various loads and environmental conditions", Polymer Testing, Vol. 91, 106770, 2020.
[8] A. Afshar and R. Wood, "Development of weather-resistant 3D printed structures by multi-material additive manufacturing", Materials Science, Vol.4, 94, 2020.
[9] Vegard Midtbøen, Kristian G. Kjelgård and Tor S. Lande, "3D printed horn antenna with PCB microstrip feed for UWB radar applications", IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, pp. 1-3, Pavia, Italy, Sept. 2017.
[10] Alejandro T. Castro, Behrouz Babakhani and Satish K. Sharma, "Design and development of a multimode waveguide corrugated horn antenna using 3D printing technology and its comparison with aluminium-based prototype", Microwave Components and Antennas Based on Advanced Manufacturing Techniques, Vol. 11, pp.1977-1984, 2017.
[11] Mustafa Emre Çarkaci and Mustafa Secmen, "Design and prototype manufacturing of a feed system for Ku‐band satellite communication by using 3D FDM/PLA printing and conductive paint technology", International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, e22062, 2019.
[12] Alejandro Rebollo, Álvaro F. Vaquero, Manuel Arrebola and Marcos R. Pino, "3D-printed dual-reflector antenna with self-supported dielectric subreflector", IEEE Access, Vol.8, pp.209091-209100, 2020.
[13] João Reis, Carlos Miguel Ribeiro and Rafael F. S. Caldeirinha, "Compact 3D‐printed reflector antenna for radar applications at K‐band", IET Microwaves Antennas & Propagation, Vol. 15, pp.843-854, 2021.
[14] Mohammed Yunus, Hamza A. Ghulman and Shadi Munshi, "Optimization and analysis (failure mode effect and finite element) of a common DTH dish antenna bracket assembly", International Journal of Mechanical Engineering and Technology, Vol. 5, pp.28-44, 2014.
[15] André R. Studart, "Additive manufacturing of biologically-inspired materials", Chemical Society Reviews, Vol. 45, pp.359-376, 2016.
[16] Charles W. Hull, "Apparatus for production of three-dimensional objects by stereolithography", US 4575330, United States of America, 1986.
[17] J-P. Kruth, Peter Mercelis, J. Van Vaerenbergh, L. Froyen and Marleen Rombouts, "Binding mechanisms in selective laser sintering and selective laser melting", Rapid Prototyping Journal, Vol. 11, pp.26-36, 2005.
[18] Kunwoo Lee, Principles of CAD/CAM/CAE Systems, Pearson, London, 1991.
[19] 曾竣煌,「熔融沉積成型技術之路徑規劃與提升製造效率研究」,碩士論文,國立中央大學,民國106年。
[20] 劉偉均,材料實驗,台北市,華泰書局,民國86年。
[21] Tobias Schmidt, Frank Gärtner, Hamid Assadi, and Heinrich Kreye, "Development of a generalized parameter window for cold spray deposition", Acta Materialia, Vol. 54, pp.729-742, 2006.
[22] 李輝煌,田口方法品質設計的原理與實務,第四版,高立圖書有限公司,民國100年。
[23] 蘇朝墩,產品穩健設計:田口品質工程方法的介紹和應用,第二版,中華民國品質協會,民國88年。
[24] Cisco, "Cisco IP VSAT Satellite WAN Network Module for Cisco Integrated Services Routers", 2006.
[25] 潘大和,實用衛星電視接收工程,全華科技圖書,民國81年。
[26] Eutelsat Société Anonyme, Antenna and VSAT Type Approval/Characterization, ESOG 120, Eutelsat Société Anonyme, Paris, 2021.
[27] Dassault Systèmes SolidWorks Corp, SOLIDWORKS Simulation專業培訓教材繁體中文版,實威國際CAE產品事業部,博碩文化股份有限公司,民國107年。指導教授 廖昭仰(Chao-Yang Liao) 審核日期 2021-10-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare