博碩士論文 105521035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.145.172.213
姓名 王麒翔(Chi-Shiang Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 用於巨量多輸入輸出均勻矩形天線陣列系統之階層式內插通道估測演算法
(Reduced-Complexity Channel Estimationby Hierarchical Interpolation Exploiting Sparsity for Massive MIMO Systems with Uniform Rectangular Array)
相關論文
★ 具輸出級誤差消除機制之三位階三角積分D類放大器設計★ 應用於無線感測網路之多模式低複雜度收發機設計
★ 用於數位D類放大器的高效能三角積分調變器設計★ 交換電容式三角積分D類放大器電路設計
★ 適用於平行處理及排程技術的無衝突定址法演算法之快速傅立葉轉換處理器設計★ 適用於IEEE 802.11n之4×4多輸入多輸出偵測器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 3GPP LTE正交分頻多工存取下行傳輸之接收端細胞搜尋與同步的設計與實現
★ 應用於3GPP-LTE下行多天線接收系統高速行駛下之通道追蹤與等化★ 適用於正交分頻多工系統多輸入多輸出訊號偵測之高吞吐量QR分解設計
★ 應用於室內極高速傳輸無線傳輸系統之 設計與評估★ 適用於3GPP LTE-A之渦輪解碼器硬體設計與實作
★ 下世代數位家庭之千兆級無線通訊系統★ 協作式通訊於超寬頻通訊系統之設計
★ 適用於3GPP-LTE系統高行車速率基頻接收機之設計★ 多使用者多輸入輸出前編碼演算法及關鍵組件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-10-15以後開放)
摘要(中) 未來世代走向5G的通訊系統,巨量多輸入多輸出系統(Massive MIMO system)被認為是具有潛力的技術,提供了更高的系統容量。而隨著基地台所制定天線數量的增加,更為複雜的均勻矩形陣列(Uniform rectangular array, URA)的二維天線系統逐漸發展而出,系統也必須承受更高的計算複雜度,傳輸過程的通道效應影響訊號的偵測,因此通道估測便成為一個相當重要的課題。常見以特徵分解(Eigen decomposition)與壓縮感知(Compressed sensing, CS)為基礎進行估測,需要使用矩陣分解或是反矩陣運算而導致相當高的運算複雜度,於是離散傅立葉轉換(Discrete Fourier transform, DFT)為基礎的通道估測法開始被採用,透過傅立葉轉換將通道換至角度域並偵測所需的通道狀態資訊。本論文以離散傅立葉轉換法為基礎進行通道估測,為了節省運算複雜度,我們提出階層式內插法,針對目標區域於空間頻譜進行小範圍的內插,逐步提升局部空間頻譜解析度來估測角度資訊,捨棄估測過程中無用的運算量;除此之外,利用於空間頻譜得到的角度資訊,消除來自其他傳輸路徑的能量干涉,提升通道增益的估測準確度,由於消除干涉的運算過程中需進行反矩陣運算,提出重要路徑優先的方式降低反矩陣運算時的矩陣大小。本次所提出的演算法與墊零法(Zero-padded)、旋轉法(Phase-rotated)相比減少更多運算量並提升通道估測效能。在硬體設計方面則針對墊零法設計32點快速傅立葉轉換的硬體架構,因為墊零法的輸入包含許多的零元素,利用此特性來降低架構中前端的硬體消耗,最後採用並列輸入之混合radix-2和radix-4的多路徑延遲交換線路系統(Multi-path delay commutator, MDC)架構實現。
摘要(英) For systems equipped with uniform rectangular antenna array, two-dimensional fast Fourier transform (2D-FFT) is often employed to transform the information in the spatial domain to the angular domain. In this thesis, based on the discrete Fourier transform method, a low-complexity approach for channel estimation is developed. To save the computational complexity, the hierarchical channel interpolation algorithm is proposed. Local interpolation with fine resolution is only applied to the selected regions for obtaining required angular information to eliminate the unnecessary computations. Furthermore, we can eliminate the path interference from due to the energy leakage according to the information of the virtual angle that is obtained from the spatial spectrum and can improve the estimation accuracy of the channel gain. However, the matrix inversion is needed during the process for interference removal. In order to reduce the size for matrix inversion, only the critical paths with stronger path gains are considered. Compared with the conventional zero-padded and phase-rotated methods, the proposed algorithm reduces about 50%~90% complexity when searching direction of angles and improves the channel estimation performance. As to the hardware design, a 32-point fast Fourier transform (FFT) hardware architecture is designed for the zero-padded 2D-FFT method. Because a half of input data are zero, we can exploit the property and eliminate the unnecessary arithmetic units. Finally, the mixed radix-2 and radix-4 MDC architecture with parallel inputs is adopted to be implemented for 32-point FFT.
關鍵字(中) ★ 角度域(空間頻譜)
★ 通道估測
★ 巨量多輸入多輸出系統
★ 均勻矩形陣列
關鍵字(英) ★ angular domain(Spatial spectrum)
★ channel estimation
★ massive MIMO
★ uniform rectangular array
論文目次 摘要 i
銘謝 iii
I. 目錄 iv
II. 圖表目錄 vi
第 1 章 緒論 1
1.1 簡介 1
1.2 研究動機與目的 2
1.3 論文章節架構 2
第 2 章 模擬環境與先前技術探討 3
2.1 模擬環境 3
2.1.1 系統模型 3
2.1.2 通道模型 4
2.2 空間域與角度域 7
2.2.1 二維離散傅立葉轉換 7
2.2.2 角度域中的通道狀態資訊 8
2.3 離散傅立葉轉換式通道估測法 10
2.3.1 墊零法(Zero-Padded) 11
2.3.2 旋轉法(Phase-rotated) 14
第 3 章 演算法設計與流程 19
3.1 演算法介紹 19
3.1.1 提升初始角度域解析度 19
3.1.2 階層式內插法 21
3.1.3 通道干涉消去法 32
3.2 演算法流程 35
第 4 章 模擬結果與比較 36
4.1 演算法參數分析 36
4.2 演算法效能比較 44
第 5 章 硬體架構設計與分析 50
5.1 快速傅立葉轉換硬體架構 50
5.1.1 單一路徑延遲迴授系統 52
5.1.2 多路徑延遲交換線路系統 55
5.1.3 硬體架構複雜度比較 58
5.1.4 資料位元數與誤差分析 59
第 6 章 結論與未來方向 65
參考文獻 66
參考文獻 [1] E. G. Larsson, O. Edfors, F. Tufvesson and T. L. Marzetta, "Massive MIMO for next generation wireless systems," in IEEE Communications Magazine, vol. 52, no. 2, pp. 186-195, February 2014.
[2] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, Nov. 2010.
[3] F. Rusek et al., “Scaling up MIMO: Opportunities and challenges with very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.
[4] E. Bjornson, E. G. Larsson, and T. L. Marzetta, ‘‘Massive MIMO: Ten myths and one critical question,’’ IEEE Commun. Mag., vol. 54, no. 2, pp. 114-123, Feb. 2016.
[5] B. Akgun, M. Krunz and O. O. Koyluoglu, "Pilot contamination attacks in massive MIMO systems," 2017 IEEE Conference on Communications and Network Security (CNS), pp. 1-9, 2017.
[6] Y. Ding and B. D. Rao, ‘‘Dictionary learning based sparse channel representation and estimation for FDD massive MIMO systems,’’ IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 5437-5451, Aug. 2018.
[7] H. Xie, F. Gao, S. Zhang, and S. Jin, “A unified transmission strategy for TDD/FDD massive MIMO systems with spatial basis expansion model,” IEEE Trans. Veh. Technol., vol. 66, no. 4, pp. 3170–3184, Apr. 2017.
[8] J. Dai, A. Liu and V. K. N. Lau, "FDD Massive MIMO Channel Estimation With Arbitrary 2D-Array Geometry," in IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2584-2599, 15 May15, 2018.
[9] R. Yin, X. Zhou, A. Wang, C. Zhong, C. Wu and X. Chen, "Adaptive Channel Estimation and Tracking for URA Based Massive MIMO Systems," IEEE Access, vol. 8, pp. 54213-54224, 2020.
[10] C. Qi, Y. Huang, S. Jin, and L. Wu, ‘‘Sparse channel estimation based on compressed sensing for massive MIMO systems,’’ in Proc. IEEE Int. Conf. Commun. (ICC), London, U.K, pp. 4558-4563, Jun. 2015.
[11] Z. Gao, L. Dai, Z. Wang and S. Chen, "Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO," in IEEE Transactions on Signal Processing, vol. 63, no. 23, pp. 6169-6183, Dec.1, 2015.
[12] D. Fan, F. Gao, G. Wang, Z. Zhong, and A. Nallanathan, “Angle domain signal processing-aided channel estimation for indoor 60-GHz TDD/FDD massive MIMO systems,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 1948-1961, Sep. 2017.
[13] A. Wang, R. Yin, C. Zhong, ‘‘Channel estimation for uniform rectangular array based massive MIMO systems with low complexity,’’ IEEE Trans. Vehicular Technology, vol.68, no.3, pp. 2545-2556, Mar. 2019.
[14] Akbar M. Sayeed, “Deconstructing Multiantenna Fading Channel,” IEEE Trans. Signal Pro., vol. 50, no. 10, pp. 2563–2579, Oct. 2002.
[15] Z. Xiao, T. He, P. Xia and X. Xia, "Hierarchical Codebook Design for Beamforming Training in Millimeter-Wave Communication," in IEEE Transactions on Wireless Communications, vol. 15, no. 5, pp. 3380-3392, May 2016.
[16] K. Chen and C. Qi, "Beam Training Based on Dynamic Hierarchical Codebook for Millimeter Wave Massive MIMO," in IEEE Communications Letters, vol. 23, no. 1, pp. 132-135, Jan. 2019.
[17] Pei-Yun Tsai, and Tzi-Dar Chiueh, “Adaptive raised-cosine channel interpolation for pilot-aided OFDM systems,” IEEE Trans. Wire. Com., vol. 8, no. 2, pp. 1028–1037, Feb. 2009.
[18] C. -S. Wang and P. -Y. Tsai, "Reduced-Complexity Channel Estimation by Hierarchical Interpolation Exploiting Sparsity for Massive MIMO Systems with Uniform Rectangular Array," ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7938-7942, 2021.
[19] J. W. Cooley and J. W. Tukey, “An Algorithm for Machine Computation of Complex Fourier Series,” Math. Computation, Vol. 19, pp. 297-301, April 1965.
[20] Jung, Y.; Cho, J.; Lee, S.; Jung, Y. Area-Efficient Pipelined FFT Processor for Zero-Padded Signals. Electronics 2019, 8, 1397.
https://doi.org/10.3390/electronics8121397
[21] 陳振模,「快速傅立葉轉換之複數乘法器設計及其系統整合改良」,國立交通大學,碩士論文,民國94年
指導教授 蔡佩芸(Pei-Yun Tsai) 審核日期 2021-10-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明