博碩士論文 107323069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.144.6.236
姓名 余政叡(Jheng-Ruei Yu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 整合擴增實境之內視鏡腦手術用導航系統研發
相關論文
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 整合可調式阻力之手足復健機研究
★ 應用於肝腫瘤治療之超音波影像輔助機械臂HIFU燒灼實驗系統★ 顱顏整型手術用植入物之設計與製作
★ 電腦輔助骨科手術用規劃及導引系統★ 遠端遙控機械手臂腹腔鏡手術系統
★ 頭部CT與MR影像之融合★ 手術用影像導引機械人定位及鑽孔系統
★ 機器人校正與醫學影像導引定位應用★ 顱顏手術用規劃及導引系統
★ 醫學用超音波影像導引系統★ 應用3D區域成長法於腦部磁共振影像之分割
★ 腦部手術用導引系統之方位校準及腦瘤影像分割★ 超音波影像即時震波導引
★ 腫瘤偵測與顱顏骨骼重建★ 骨科手術用C-arm影像輔助規劃及導引系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統的腦部手術存在傷口大與對腦部組織傷害大的缺點,而微創內視鏡手術具有傷口小、病患術後回復速度快與對腦組織傷害小的優點,因此在近十年來蓬勃發展。當醫師在執行腦部微創內視鏡手術時,由於腦部的血管與神經分布複雜,且進入病患腦部之後,醫師只能透過內視鏡影像、CT/MRI影像與自身的解剖知識和臨床經驗來判斷目前內視鏡影像區域後面可能有什麼重要組織,因此在手術過程中必須小心地操作手術器械,以免傷到重要的腦動脈血管或腦神經組織,故術前規劃出一條盡量避開腦部重要組織的手術路徑,且提供一種直觀的方式讓醫師可以確認手術路徑姿態,並在手術的過程中,可以提前告知醫師被內視鏡影像區域後面有什麼組織,讓醫師有更多資訊做判斷,以提高手術安全性。
本研究以實驗室既有的CT影像導航系統為基礎,透過多路復用輸入輸出模型的套用與資料傳遞機制的建立,將實驗室既有的AR系統整合到其中,利用AR眼鏡的虛實對位,提供醫師一個直觀且3D的方式來觀察規劃的手術路徑在實際病人身上的姿態,並新增多台AR眼鏡同時使用的功能,使AR系統可以應用於協作或教學的場合。本研究改良了原CT影像導航系統的手術路徑規劃方式,讓醫師可以在點選結束點後,利用系統介面上的拉桿來調整手術路徑的方向;又透過相機校正、手眼校正與虛實影像疊合的方式,新增了內視鏡導航功能與呈現內視鏡影像區域背後血管組織的預警系統,提供醫師更多資訊做手術安全判斷。
本研究完成了內視鏡相機校正驗證實驗與內視鏡手眼校正驗證實驗,內視鏡相機校正實驗的特徵點平均位置誤差為0.75±0.49pixel;內視鏡手眼校正驗證實驗的平均特徵點位置誤差為0.41±0.13mm,在導航系統端的準確度(Accuracy)良好的狀況之下,實驗結果是符合臨床可容許誤差(2mm)。
摘要(英) Comparing with conventional brain surgery, minimally invasive endoscopic surgery has the advantages of small wounds, rapid recovery of patients after surgery, and less damage to brain tissues. Therefore, minimally invasive endoscopic surgery has been booming in the past decade. When surgeons perform the minimally invasive brain endoscopic surgery, they can only use the endoscopic and CT/MRI images with their own anatomic knowledge and clinical experience to guess the existence of brain vessels or nerves behind the endoscopic image. Therefore, the surgeons need to be very careful intraoperatively to avoid damaging cerebral arteries or nerves, causing cerebral edema and intracranial hemorrhage.
This research develops an endoscopic surgical navigation system, by modifying the path planning method and integrating the AR system into the existing CT image based navigation system to provide an easy and intuitive way for planning a safe surgical path that can avoid important brain tissues such as cerebral arteries and nerves. This research also adds new path planning functions and virtual endoscopic images of arteries onto the current endoscopic image so that the surgeons realize the existence of arteries behind the current endoscopic image.
Two experiments of this research can were completed. The first experiment is to measure the accuracy of camera calibration, and the results show that the average distance error of feature points is0.75±0.49pixel. The second experiment is to measure the accuracy of hand-eye calibration. The results show that the average distance error is 0.41±0.13mm. Under the good condition of the accuracy of the navigation system, then the result of this experiment is lower than the clinical requirement range (2mm).
關鍵字(中) ★ 擴增實境
★ 內視鏡手術
★ 手術導航
★ 腦部手術
關鍵字(英) ★ Augmented reality
★ endoscopic surgery
★ surgical navigation
★ brain surgery
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1-1研究動機 1
1-2文獻回顧 3
1-3研究內容簡介 11
第二章 AR系統與內視鏡導航系統的整合 13
2-1座標系統之間的轉換關係 13
2-2 AR系統簡介 15
2-3資料傳輸的機制與方法 19
2-4多台HoloLens的同時連線的機制與方法 22
第三章 內視鏡導航系統 24
3-1座標系統之間的轉換關係 25
3-2路徑規劃的改良與運作機制 26
3-3內視鏡相機的相機校正 29
3-3-1內視鏡相機的相機校正流程 33
3-3-2內視鏡相機的校正結果 36
3-3-3內視鏡相機的校正結果驗證 37
3-4內視鏡相機的手眼校正 41
3-4-1內視鏡相機與光學定位器械的手眼校正 46
3-4-2內視鏡相機與光學定位器械座標轉換的校正結果 49
3-4-3校正結果驗證 49
3-5內視鏡虛實畫面的疊合 59
第四章 結論與未來展望 64
參考文獻 67
附錄一 70
附錄二 73
附錄三 76
參考文獻 [1] 衛生福利部統計處. "108年全民健康保險醫療統計年報." https://dep.mohw.gov.tw/DOS/cp-5034-57477-113.html
[2] 衛生福利部統計處. "108年國人死因統計結果." https://www.mohw.gov.tw/cp-16-54482-1.html
[3] S. Jeswani, M. Nuño, A. Wu, V. Bonert, J. D. Carmichael, K. L. Black, R. Chu, W. King, and A. N. Mamelak, "Comparative analysis of outcomes following craniotomy and expanded endoscopic endonasal transsphenoidal resection of craniopharyngioma and related tumors: a single-institution study," Journal of neurosurgery, vol. 124, no. 3, 2016, pp. 627-638.
[4] G. Sun, X. Li, X. Chen, Y. Zhang, and Z. Xu, "Comparison of keyhole endoscopy and craniotomy for the treatment of patients with hypertensive cerebral hemorrhage," Medicine, vol. 98, no. 2, 2019, p. e14123.
[5] Stryker. "Stryker ENT navigation system." https://ent.stryker.com/medical-devices/navigation.
[6] K. Storz. "Navigation." https://www.karlstorz.com/hu/en/navigation.htm?d=HM.
[7] Medtronic. "ElvVision IR Platform." https://www.medtronic.com/covidien/en-us/products/visualization-solutions/elevision-ir-platform.html
[8] B. Münzer, K. Schoeffmann, and L. Böszörmenyi, "Content-based processing and analysis of endoscopic images and videos: A survey," Multimedia Tools and Applications, vol. 77, no. 1, 2018, pp. 1323-1362.
[9] A. Neubauer, S. Wolfsberger, M.-T. Forster, L. Mroz, R. Wegenkittl, and K. Buhler, "Advanced virtual endoscopic pituitary surgery," IEEE Transactions on Visualization and Computer Graphics, vol. 11, no. 5, 2005, pp. 497-507.
[10] A. Kruger, C. Kubisch, B. Preim, and G. Strauss, "Sinus endoscopy-application of advanced GPU volume rendering for virtual endoscopy," IEEE transactions on visualization and computer graphics, vol. 14, no. 6, 2008, pp. 1491-1498.
[11] R. Shamir, L. Joskowicz, and Y. Shoshan, "An augmented reality guidance probe and method for image-guided surgical navigation," in 5th International Symposium on Robotics and Automation, 2006, pp. 25-28.
[12] T. Frantz, B. Jansen, J. Duerinck, and J. Vandemeulebroucke, "Augmenting Microsoft′s HoloLens with vuforia tracking for neuronavigation," Healthcare technology letters, vol. 5, no. 5, 2018, pp. 221-225.
[13] X. Chen, L. Xu, Y. Wang, H. Wang, F. Wang, X. Zeng, Q. Wang, and J. Egger, "Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display," Journal of biomedical informatics, vol. 55, 2015, pp. 124-131.
[14] G. Burström, O. Persson, E. Edström, and A. Elmi-Terander, "Augmented reality navigation in spine surgery: a systematic review," Acta Neurochirurgica, 2021, pp. 1-10.
[15] A. Elmi-Terander et al., "Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy," Scientific reports, vol. 10, no. 1, 2020, pp. 1-8.
[16] E. Bostanci, N. Kanwal, S. Ehsan, and A. F. Clark, "User tracking methods for augmented reality," International Journal of Computer Theory and Engineering, vol. 5, no. 1, 2013, p. 93.
[17] J. Cheng, K. Chen, and W. Chen, "Comparison of marker-based AR and marker-less AR: a case study on indoor decoration system," in Lean and Computing in Construction Congress (LC3): Proceedings of the Joint Conference on Computing in Construction (JC3), 2017, pp. 483-490.
[18] 馮德諼, "腦部手術導航系統與混合實境之整合," 碩士, 機械工程學系, 國立中央大學, 桃園縣, 2019.
[19] 夏笙, "應用於椎莖骨釘植入之CT影像式手術導引系統," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 2005.
[20] Z. Zhang, "A flexible new technique for camera calibration," IEEE Transactions on pattern analysis and machine intelligence, vol. 22, no. 11, pp. 1330-1334, 2000.
[21] R. Tsai, "A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses," IEEE Journal on Robotics and Automation, vol. 3, no. 4, 1987, pp. 323-344.
[22] S. Bougnoux, "From projective to euclidean space under any practical situation, a criticism of self-calibration," in Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), 1998: IEEE, pp. 790-796.
[23] 江宗錡, "六軸關節型機械手臂之手眼校正研究," 碩士, 電機工程學系, 國立成功大學, 台南市, 2014.
[24] R. Y. Tsai and R. K. Lenz, "A new technique for fully autonomous and efficient 3 D robotics hand/eye calibration," IEEE Transactions on robotics and automation, vol. 5, no. 3, 1989, pp. 345-358.
[25] F. C. Park and B. J. Martin, "Robot sensor calibration: solving AX= XB on the Euclidean group," IEEE Transactions on Robotics and Automation, vol. 10, no. 5, 1994, pp. 717-721.
[26] R. Horaud and F. Dornaika, "Hand-eye calibration," The international journal of robotics research, vol. 14, no. 3, 1995, pp. 195-210.
[27] N. Andreff, R. Horaud, and B. Espiau, "On-line hand-eye calibration," in Second International Conference on 3-D Digital Imaging and Modeling (Cat. No. PR00062), 1999: IEEE, pp. 430-436.
[28] K. Daniilidis, "Hand-eye calibration using dual quaternions," The International Journal of Robotics Research, vol. 18, no. 3, 1999, pp. 286-298.
[29] Microsoft. "Microsoft HoloLens." https://docs.microsoft.com/en-us/hololens/
指導教授 曾清秀(Ching-Shiow Tseng) 審核日期 2021-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明