博碩士論文 107624603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:123 、訪客IP:18.116.14.12
姓名 陳玉秀(Tran Ngoc Tu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱
(The relationship of kaolinite friction characteristics and temperature changing in submerged conditions)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
過往研究表明,滑移速度會顯著影響滑山崩滑移帶的強度,而且水對滑
移帶的影響也被認為是一個關鍵因素。然而,關於此影響的文獻討論仍不足
夠,且仍在爭論之中。為了更深入地研究滑移速度和排水條件對山崩滑移帶
強度的影響,本研究以在正向應力為 1 MPa 及較大滑移速度範圍(從 10-7
m/s
到 1 m/s)的實驗條件對純高嶺土上進行了一系列旋剪試驗。在徑向排水條件
下,將試體夾在兩個不透水的圍岩之間以鐵氟龍環包覆,然後將其放入浸水
容器中。本研究還評估了浸水條件下摩擦特性與溫度變化之間的相關性。結
果表明,穩態摩擦係數在滑移速度從 10-7
m/s 到 10-5
m/s 時到達 0.2,然後在
10-4
m/s 時略微上升到 0.26、在 10-3
m/s 時上升到 0.3、並在 10-2
m/s 時到達 0.4、
接下來在 10-1
m/s 下降至 0.3。而在 1 m/s 的實驗條件下摩擦係數為滑移弱化
且穩態摩擦係數等於 0.14,這顯示了在浸水條件下之結果不同於先前研究的
氣乾且飽和條件下的實驗結果。另外在實驗過程中的溫度紀錄為在低滑移速
度(從 10-7
m/s 到 10-3
m/s)下保持在攝氏 25 – 26 度左右,然後在 10-2
m/s 時
逐漸增加到攝氏 32 度,接下來在 10-1
m/s 的速度顯著地升至攝氏 60 度,最後
以 1 m/s 的速度升至攝氏 75 度。然而,這項研究表明了高嶺土的線性熱膨脹
是在剪切過程產生的,與軸向位移的變化無關。
關鍵詞:旋轉剪切試驗、高嶺土、速度相依性、排水條件、溫度測量。
摘要(英) ABSTRACT
Researches have suggested that slip rates can significantly influence the
strength of the slip zones of landslides, and the effect of water on the slip zones is
also proposed as a crucial factor. Nevertheless, efficient reports on this process
are still limited and are continue being debated. In order to dig deeper into the
roles of slip rate and drainage condition on the strength of the slip zones of the
landslides, a series of rotary shear tests were conducted on a wide range of shear
velocity (from 10-7
to 1 m/s) with normal stress of 1 MPa on kaolinite clay. For
the control of radial drainage condition, samples were sandwiched by two
impermeable-holders and covered by a Teflon ring. The system then being
submerged into water tank. This research also assesses the correlation between
the friction characteristics and the temperature changes in the submerged
condition. The results illustrated that the steady-state friction coefficient reached
0.2 at a slip rate from 10-7 m/s to 10-5 m/s and followed by a slightly raised to 0.26
at 10-4 m/s, 0.3 at 10-3 m/s, and reached 0.4 at 10-2 m/s before dropping to 0.3 at
10-1
. The friction coefficient at 1 m/s shown the slip-weakening behavior with
steady-state friction equal 0.14, indicated that the submerged condition is different
to the dry and saturated conditions from previous studies. Temperature
measurement results during the tests were maintained at around 25 – 26 degrees
Celsius at a low slip rate (from 10-7 m/s to 10-3 m/s), then gradually increased to
32 degrees Celsius at 10-2 m/s, and significantly raised to 60 degrees Celsius at
10-1 m/s and 75 degrees Celsius at 1 m/s. However, this study proved that the
linear thermal expansion of kaolinite clay had been created by the shearing
process, not related to the changing of axial displacement.
Keywords: Rotary shear test, kaolinite, velocity dependency, drainage
condition, temperature measurement.
關鍵字(中) ★ 旋轉剪切試驗
★ 高嶺土
★ 速度相依性
關鍵字(英) ★ Rotary shear test
★ kaolinite
★ velocity dependency
論文目次 TABLE OF CONTENTS
ABSTRACT................................................................................................................i
ACKNOWLEDGEMENTS .....................................................................................ii
LIST OF FIGURES.................................................................................................. v
LIST OF NOTATIONS...........................................................................................ix
CHAPTER I: INTRODUCTION............................................................................ 1
1.1. Motivation and purpose .............................................................................. 1
1.2. Flow chart of this study ............................................................................... 4
CHAPTER 2: LITERATURE REVIEW ............................................................... 6
2.1. The friction coefficient in rotary shear tests ............................................. 6
2.2. Velocity – displacement dependent friction law ....................................... 7
2.3. Teflon ring affects the friction coefficient ................................................. 9
2.4. Temperature changing in shear tests......................................................... 9
CHAPTER 3: METHODOLOGY ........................................................................ 10
3.1. Low- to high-velocity rotary-shear friction apparatus .......................... 10
3.2. Samples preparation.................................................................................. 14
3.2.1. Testing material ......................................................................................... 14
3.2.2. Holders........................................................................................................ 14
3.2.3. The Teflon rings friction coefficient......................................................... 14
3.2.4. Thermocouple............................................................................................. 15
3.3. Testing program......................................................................................... 16
3.3.1. Consolidation stage .................................................................................... 16
3.3.2. Shearing stage............................................................................................. 16
3.3.3. Calculating temperature ........................................................................... 16
3.3.4. How to evaluate thermo-expansion.......................................................... 17
3.3.5. The steady-state friction coefficient ......................................................... 18
iv
CHAPTER 4: RESULTS ....................................................................................... 21
4.1. Consolidation stage .................................................................................... 21
4.2. Shearing stage............................................................................................. 23
4.2.1. Teflon correction........................................................................................ 23
4.2.2. Friction coefficient, axial displacement, and temperature versus slip
displacement............................................................................................................ 25
4.2.3. Velocity-dependent steady-state friction coefficient............................... 39
4.2.4. Temperature changing during the shear tests........................................ 40
CHAPTER 5: DISCUSSION................................................................................. 42
5.1. Classification of friction coefficient versus shear displacement curves 42
5.2. Dilation during shear................................................................................. 43
5.3. Repeatability of testing results.................................................................. 45
5.4. Temperature calculation and measurement ........................................... 48
5.5. Steady-state friction coefficient compare with previous studies........... 49
CHAPTER 6: CONCLUSIONS ............................................................................ 52
REFERENCES........................................................................................................ 54
APPENDIX.............................................................................................................. 61
參考文獻 REFERENCES
[1] Alonso, E.E., Pinyol, N.M., 2010. Criteria for rapid sliding: A review of
Vajont case. Engineering Geology, Vol 114, No. 3–4, pp. 198–210.
[2] Alonso, E.E., Zervos, A., Pinyol, N.M., 2016. Thermo-poro-mechanical
analysis of landslides: From creeping behavior to catastrophic failure.
Geotechnique, Vol 66, No. 3, pp. 202-219.
[3] Beeler, N.M., Tullis, T.E., Goldsby, D.L., 2008. Constitutive relationships
and physical basis of fault strength due to flash heating. Journal of
Geophysical Research, Vol 113, B01401.
[4] Bhat, D.R., Bhandari, N.P., Yatabe, R., 2013. Method of residual-state creep
test to understand the creeping behaviour of landslide soils. Landslide
Science and Practice, Vol 2, pp. 635-642.
[5] Brahim, K.B., Zaoui, A., Anatoly, B.B., 2013. Determination of the melting
temperature of kaolinite by means of the Z-method. American
Mineralogist, Vol 98, No. 10, pp. 1881–1885.
[6] Brantut, N., Schubnel, A., Rouzaud, J.N., Brunet, F., Shimamoto, T., 2008.
High-velocity frictional properties of a clay-bearing fault gouge and
implications for earthquake mechanics. Journal of Geophysical Research,
Vol 113, B10401.
[7] Buijze, L., Niemeijer, A.R., Han, R., Shimamoto, T., Spiers, C.J., 2017.
Friction properties and deformation mechanisms of halite(‐mica) gouges
from low to high sliding velocities. Earth and Planetary Science Letters,
Vol 458, pp. 107–119.
[8] Chen, J., Niemeijer, A., Yao, L., Ma, S., 2017. Water vaporization promotes
coseismic fluid pressurization and buffers temperature rise. Geophysical
Research Letters, Vol 44, pp. 2177-2185.
55
[9] Faulkner, D.R., Mitchell, T.M., Behnsen, J., Hirose, T., Shimamoto, T. Stuck
in the mud? Earthquake nucleation and propagation 1646 through
accretionary forearms. Geophysical Research Letters, Vol 38, L18303.
[10] Ferri, F., Toro, G.D., Hirose, T., Han, R., Noda, H., Shimamoto, T.,
Quaresimin, M., Rossi, N.D., 2011. Low-to high-velocity frictional
properties of the clay-rich gouges from the slipping zone of the 1963
Vaiont slide, northern Italy. Journal of Geophysical Research, Vol 116,
B09208.
[11] Ferri, F., Toro, G.D., Hirose, T., Shimamoto, T., 2010. Evidence of thermal
pressurization in high-velocity friction experiments on smectite-rich
gouges. Terra Nova, Vol 22, No. 5, pp. 347-353.
[12] Frost, R.L., Horváth, E., Makó, E., Kristof, J., 2004. Modification of low and
high-defect kaolinite surfaces: implications for kaolinite mineral
processing. Colloid and Interface Science, Vol 270, pp. 337–346.
[13] Goldsby, D.L., Tullis, T.E., 2002. Low frictional strength of quartz rocks at
subseismic slip rates. Geophysical Research Letters, Vol 29, No. 17, pp.
1844.
[14] Goren, L., Aharonov, E., 2007. Long runout landslides: The role of frictional
heating and hydraulic diffusivity. Geophysical Research Letters, Vol 34,
L07301.
[15] Han, R., Shimamoto, T., Hirose, T., Ree, H.J., Ando, J., 2007. Ultralow
friction of carbonate faults caused by thermal decomposition. Science,
Vol 316, pp. 878–881.
[16] Hendron, A.J., Patton, F.D., 1987. The Vaiont slide - a geotechnical analysis
based on new geologic observations of the failure surface. Engineering
Geology, Vol 24, No. 1-4, Vol 475-491.
[17] Hirose, T., Bystricky, M., 2007. Extreme dynamic weakening of faults
during dehydration by coseismic shear heating. Geophysical Research
Letters, Vol 34, L14311.
56
[18] Hirose, T., Shimamoto, T., 2005. Growth of molten zone as a mechanism of
slip weakening of simulated faults in gabbro during frictional melting.
Geophysical Research, Vol 110, B05202.
[19] Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes classification of
landslide types, an update. Landslides, Vol 11, pp. 167–194.
[20] Ikari, M.J., Saffer, D.M., Marone, C., 2007. Effect of hydration state on the
frictional properties of montmorillonite-based fault gouge. Geophysical
Research: Solid Earth, Vol 112, B06423.
[21] Iverson, R.M., Richard, M., 2005. Regulation of landslide motion by
dilatancy and pore pressure feedback. Geophysical Research, Vol 110,
F02015.
[22] Kim, J.W., Ree, J. H., Han, R., Shimamoto, T., 2010. Experimental evidence
for the simultaneous formation of pseudotachylyte and mylonite in the
brittle regime. Geology, Vol 38, pp. 1143-1146.
[23] Lachenbruch, A.H., 1980. Frictional heating, fluid pressure, and the
resistance to fault motion. Geophysical Research, Vol 85, pp. 6097–6122.
[24] Lee, Y.W., 2017. Relationship of frictional characteristics of kaolin clay in
different slip rates and drainage conditions, National Central University,
Master thesis (in Chinese).
[25] Mase, C.W., Smith, L., 1987. Effects of frictional heating on the thermal,
hydrologic, and mechanical response of a fault. Geophysical Research:
Solid Earth, Vol 92, pp. 6249–6272.
[26] McConnell, J., Fleet, S., 1970. Electron Optical Study of the Thermal
Decomposition of Kaolinite. Clay Minerals, Vol 8, No. 3, pp. 279-290.
[27] McKenzie, D.P., Brune, J.N., 1972. Melting on fault planes during large
earthquakes. Geophysical Journal of the Royal Astronomical Society, Vol
29, pp. 65–78.
[28] Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E. 2007.
Reconstruction of seismic faulting by high-velocity friction experiments:
57
an example of the 1995 Kobe earthquake. Geophysical Research Letters,
Vol 34, L01308.
[29] Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., 2006. Moisturerelated weakening and strengthening of a fault activated at seismic slip
rates. Geophysical Research Letters, Vol 33, L16319.
[30] Moore, D.E., Lockner, D.A., 2007. Friction of the smectite clay
montmorillonite: A review and interpretation of data. The seismogenic
zone of subduction thrust faults, pp. 317-345.
[31] Morrow, C.A., Radney, B., Byerlee, J.D., 1992. Frictional strength and the
effective pressure law of montmorillonite and illite clays. International
Geophysics, Vol 51, pp. 69-88.
[32] Niemeijer, A., Toro, G.D., Nielsen, S., Felice, F.D., 2011. Frictional melting
of gabbro under extreme experimental conditions of normal stress,
acceleration, and sliding velocity. Geophysical Research: Solid Earth, Vol
116, B07404.
[33] Noda, H., Shimamoto, T., 2005. Thermal pressurization and slip-weakening
distance of a fault: an example of the Hanaore fault, southwest Japan.
Bulletin of the Seismological Society of America, Vol 95, No. 4, pp.
1224–1233.
[34] Noda, H., Shimamoto, T., 2005. Thermal Pressurization and Slip-Weakening
Distance of a Fault: An Example of the Hanaore Fault, Southwest Japan.
Bulletin of the Seismological Society of America; Vol 95, No. 4, pp.
1224–1233.
[35] Nonveiller, E., 1992. Vaiont slide: influence of frictional heat on slip
velocity. Proceedings of the meeting on the Vaiont 1963, pp. 187 – 197.
[36] Oohashi, K., Hirose, T., Takahashi, M., Tanikawa, W., 2015. Dynamic
weakening of smectite-bearing faults at intermediate velocities:
implications for subduction zone earthquakes. Geophysical Research, Vol
120, pp. 1572-1586.
58
[37] Paola, N.D., Holdsworth, R.E., Viti, C., Collettini, C., Bullock, R., 2015. Can
grain size sensitive flow lubricate faults during the initial stages of
earthquake propagation? Earth and Planetary Science Letters, Vol 431,
pp. 48-58.
[38] Petley, D.N., Allison, R.J., 1997. The mechanics of deep-seated landslides.
Earth Surface Processes and Landforms: The Journal of the British
Geomorphological Group, Vol 22, pp. 747-758.
[39] Pham, Q.V., 2019. Velocity-dependent frictional properties of kaolinite clay
under different drainage conditions with temperature measurement,
National Central University, Master thesis.
[40] Pinyol, N.M., Alvarado, M., Alonso, E.E., Zabala, F., 2017. Thermal effects
in landslide mobility. Géotechnique, pp. 1-18.
[41] Rao, V.V.S., Babu, G.L.S., 2016. Forensic Geotechnical Engineering.
Springer Science and Business Media LLC, pp. 210.
[42] Remitti, F., Smith, S.A.F.S., Mittempergher, Gualtieri, A.F., Toro, G.D.,
2015. Frictional properties of fault zone gouges from the J‐FAST drilling
project (Mw 9.0 2011 Tohoku‐Oki earthquake). Geophysical Research
Letters, Vol 42, pp. 2691–2699.
[43] Rice, J.R., 2006. Heating and weakening of faults during earthquake slip.
Geophysical Research, Vol 111, B05311.
[44] Sawai, M., Hirose, T., Kameda, J., 2014. Frictional properties of incoming
pelagic sediments at the Japan Trench: Implications for large slip at a
shallow plate boundary during the 2011 Tohoku earthquake. Earth Planets
Space, Vol 66, No. 1, pp. 65.
[45] Shimamoto, T., 1994. A new rotary‐shear high‐speed frictional testing
machine: its basic design and scope of research. Jour. Tectonic Res.
Group of Japan, Vol 39, pp. 65–78.
59
[46] Sibson, R.H., 1973. Interactions between temperature and pore fluid pressure
during an earthquake faulting and a mechanism for partial or total stress
relief. Nature Physical Science, Vol 243, pp. 66–68.
[47] Tika, T.E., Hutchinson, J.N., 1999. Ring shear tests on soil from the Vaiont
landslide slip surface. Geotechnique, Vol 49, pp. 59-74.
[48] Togo, T., Ma, S.L., Hirose, T., 2009. High-velocity friction of faults: A
review and implication for landslide studies. The Next Generation of
Research on Earthquake-induced Landslides: An International
Conference in Commemoration of 10th Anniversary of the Chi-Chi
Earthquake, pp. 205-216.
[49] Togo, T., Shimamoto, T., 2012. Energy partition for grain crushing in quartz
gouge during subseismic to seismic fault motion: an experimental study.
Structural Geology, Vol 38, pp. 139–155.
[50] Toro, G.D., Goldsby, D.L., Tullis, T.E., 2004. Friction falls toward zero in
quartz rock as slip velocity approaches seismic rates. Nature, Vol 427, pp.
436–439.
[51] Toro, G.D., Han, R., Hirose, T., Paola, N.D., Nielsen, S., Mizoguchi, K.,
Ferri, F., Cocco, M., Shimamoto, T., 2011. Fault lubrication during
earthquakes. Nature, Vol 471, pp. 494-497.
[52] Tsutsumi, A., Shimamoto, T., 1997. High-velocity frictional properties of
gabbro. Geophysical Research Letters, Vol 24, pp. 699–702.
[53] Vardoulakis, I., 2000. Catastrophic landslides due to frictional heating of the
failure plane. Mechanics of Cohesive‐frictional Materials: An
International Journal on Experiments, Modelling and Computation of
Materials and Structures, Vol 5, No. 6, pp. 443–467.
[54] Varnes, D.J., 1978. Slope movement types and processes. Special report, Vol
176, pp. 11-33.
60
[55] Veveakis, E., Vardoulakis, I., Toro, G.D., 2007. Thermoporomechanics of
creeping landslides: The 1963 Vaiont slide, northern Italy. Geophysical
Research: Earth Surface, Vol 112, F03026.
[56] Voight, B., Faust, C., 1982. Frictional heat and strength loss in some rapid
landslides. Geotechnique. Vol 32, No. 1, pp. 43–54.
[57] Wada, J.I., Kanagawa, K., Kitajima, H., Takahashi, M., Inoue, A., Hirose,
T., Ando, J.I., Noda, H., 2016. Frictional strength of ground dolerite
gouge at a wide range of slip rates. Geophysical Research: Solid Earth,
Vol 121, pp. 2961-2979.
[58] Wang, F., Zhang, Y., Huo, Z., Peng, X., Wang, S., Yamasaki, S., 2008.
Mechanism for the rapid motion of the Qianjiangping landslide during
reactivation by the first impoundment of the Three Gorges Dam reservoir,
China. Landslides, Vol 5. No. 4, pp. 379-386.
[59] Wang, Y.F., Dong, J.J., Cheng, Q.G., 2017. Velocity-dependent frictional
weakening of large rock avalanche basal facies: Implications for rock
avalanche hypermobility? Geophysical Research: Solid Earth, Vol 122,
pp. 1648–1676.
[60] Wibberley, C.A.J., Shimamoto, T., 2005. Earthquake slip weakening and
asperities explained by thermal pressurization. Nature, Vol 436, pp. 689–
692.
[61] Yang, C.M., Yu, W.L., Dong, J.J., Kuo, C.Y., Shimamoto, T., Lee, C.T.,
Togo, T., Miyamoto, Y., 2014. Initiation, movement, and run-out of the
giant Tsaoling landslide What can we learn from a simple rigid block
model and a velocity-displacement dependent friction law?. Engineering
Geology, Vol 182, pp. 158-181.
[62] Yao, L., Ma, S., Platt, J.D., Niemeijer, A.R., Shimamoto, T., 2016. The
crucial role of temperature in high-velocity weakening of faults:
Experiments on gouge using host blocks with different thermal
conductivities. Geology, Vol 44, No. 1, pp. 63-66.
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2021-3-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明