參考文獻 |
[1] I. A. Shiklomanov, “World water resources. A new appraisal and assessment for the 21st century,” 1998.
[2] S. Siebert et al., “Groundwater use for irrigation - A global inventory,” Hydrol. Earth Syst. Sci., vol. 14, no. 10, pp. 1863–1880, 2010, doi: 10.5194/hess-14-1863-2010.
[3] N. R. Council, Ground Water Vulnerability Assessment: Predicting Relative Contamination Potential Under Conditions of Uncertainty. Washington, DC: The National Academies Press, 1993.
[4] R. G. Aronovsky, “Liability theories in contaminated groundwater litigation,” Environ. Forensics, vol. 1, no. 3, pp. 97–116, 2000, doi: 10.1006/enfo.2000.0016.
[5] G. W. Partnership, “Integrated Water Resources Management,” 2000. doi: 10.1201/9781315153292.
[6] Y. Sayato, “WHO Guidelines for Drinking-Water Quality,” Eisei kagaku, vol. 35, no. 5, pp. 307–312, 1989, doi: 10.1248/jhs1956.35.307.
[7] J. D. Arthur, H. A. R. Wood, A. E. Baker, J. R. Cichon, and G. L. Raines, “Development and Implementation of a Bayesian-based Aquifer Vulnerability Assessment in Florida,” Nat. Resour. Res., vol. 16, no. 2, pp. 93–107, 2007, doi: 10.1007/s11053-007-9038-5.
[8] A. Sorichetta, “Groundwater vulnerability assessment using statistical methods,” Università Degli Studi. Ph.D. study, 2010.
[9] G. Aller, L., Bennet, T., Leher, J. H., Petty, R. J., & Hackett, “DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings,” 1987.
[10] M. Focazio, T. E. Reilly, M. G. Rupert, and D. R. Helsel, “Assessing ground-water vulnerability to contamination: Providing scientifically defensible information for decision makers.,” 2002.
[11] E. Sener and A. Davraz, “Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey),” Hydrogeol. J., vol. 21, no. 3, pp. 701–714, 2012, doi: 10.1007/s10040-012-0947-y.
[12] A. Neshat, B. Pradhan, and M. Dadras, “Groundwater vulnerability assessment using an improved DRASTIC method in GIS,” Resour. Conserv. Recycl., vol. 86, pp. 74–86, 2014, doi: 10.1016/j.resconrec.2014.02.008.
[13] S. Sahoo, A. Dhar, A. Kar, and D. Chakraborty, “Index-based groundwater vulnerability mapping using quantitative parameters,” Environ. Earth Sci., vol. 75, no. 6, pp. 1–13, 2016, doi: 10.1007/s12665-016-5395-x.
[14] A. Allah, Z. Sedghi, R. Khatibi, and M. Gharekhani, “Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive model structures Science of the Total Environment Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive,” Sci. Total Environ., vol. 593–594, no. September, pp. 75–90, 2017, doi: 10.1016/j.scitotenv.2017.03.109.
[15] A. A. Nadiri, Z. Sedghi, R. Khatibi, and S. Sadeghfam, “Mapping specific vulnerability of multiple confined and unconfined aquifers by using artificial intelligence to learn from multiple DRASTIC frameworks,” J. Environ. Manage., vol. 227, 2018, doi: 10.1016/j.jenvman.2018.08.019.
[16] C. S. Jang, C. F. Chen, C. P. Liang, and J. S. Chen, “Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain,” J. Hydrol., vol. 533, pp. 541–556, 2016, doi: 10.1016/j.jhydrol.2015.12.023.
[17] C. S. Jang and S. K. Chen, “Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones,” J. Hydrol., vol. 523, pp. 441–451, 2015, doi: 10.1016/j.jhydrol.2015.01.077.
[18] L. Huang, G. Zeng, J. Liang, S. Hua, Y. Yuan, and X. Li, “Combined impacts of land use and climate change in the modeling of future groundwater vulnerability,” J. Hydrol. Eng., vol. 22, no. 7, p. 05017007, 2009, doi: 10.1061/(ASCE)HE.1943-5584.0001493.
[19] R. Li and J. W. Merchant, “Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: A case study in North Dakota, USA,” Sci. Total Environ., vol. 447, pp. 32–45, 2013, doi: 10.1016/j.scitotenv.2013.01.011.
[20] M. L. Lima, K. Zelaya, and H. Massone, “Groundwater vulnerability assessment combining the drastic and Dyna-CLUE model in the Argentine Pampas,” Environ. Manage., vol. 47, no. 5, pp. 828–839, 2011, doi: 10.1007/s00267-011-9652-1.
[21] I. Ouedraogo, P. Defourny, and M. Vanclooster, “Mapping the groundwater vulnerability for pollution at the pan African scale,” Sci. Total Environ., vol. 544, pp. 939–953, 2016, doi: 10.1016/j.scitotenv.2015.11.135.
[22] Y. Zhou and W. Li, “A review of regional groundwater flow modeling,” Geosci. Front., vol. 2, no. 2, pp. 205–214, 2011, doi: 10.1016/j.gsf.2011.03.003.
[23] W. M. Alley, T. E. Reilly, L. O. Franke, N. B. Basu, and K. Van Meter, Sustainability of Groundwater Resources., vol. 4. U.S. Geological Survey Circular 1186, 1999.
[24] S. Gordon, “Sustainable Groundwater Management: Preliminary Approach for Assessing the Sustainability of Groundwater,” 2011. [Online]. Available: http://www.ccme.ca/files/Resources/water/groundwater/Sustainable Groundwater Management - Preliminary Approach for Assessing the Sustainability of Groundwater.pdf.
[25] A. Steinman, “Report to the Michigan Legislature on: Recommended criteria and indicators of groundwater sustainability for the state of Michigan,” 2007. [Online]. Available: http://southeastaquatics.net/resources/pdfs/MI GW_Sustainability_Workshop_report5_196985.pdf.
[26] J. Vrba and A. Lipponen, “Groundwater Resources Sustainability Indicators,” 2007.
[27] C. P. Liang, C. S. Jang, C. W. Liang, and J. S. Chen, “Groundwater vulnerability assessment of the pingtung plain in Southern Taiwan,” Int. J. Environ. Res. Public Health, vol. 13, no. 11, pp. 1–19, 2016, doi: 10.3390/ijerph13111167.
[28] C. S. Ting, Y. Zhou, J. J. De Vries, and I. Simmers, “Development of a preliminary ground water flow model for water resources management in the Pingtung Plain, Taiwan,” Ground Water, vol. 36, no. 1, pp. 20–36, 1998, doi: 10.1111/j.1745-6584.1998.tb01062.x.
[29] H.-M. Füssel, “Vulnerability: A generally applicable conceptual framework for climate change research,” Glob. Environ. Chang., vol. 17, no. 2, pp. 155–167, 2007, doi: https://doi.org/10.1016/j.gloenvcha.2006.05.002.
[30] N. Brooks, “Vulnerability, risk and adaptation: A conceptual framework,” no. 38, 2003.
[31] O. Schmoll, Protecting Groundwater for Health: Managing the Quality of Drinking-water Sources, vol. 12. 2013.
[32] I. C. Popescu, N. Gardin, S. Brouyère, and A. Dassargues, “Groundwater vulnerability assessment using physically-based modelling: From challenges to pragmatic solutions,” IAHS-AISH Publ., no. 320, pp. 83–88, 2008.
[33] M. Vrana, “Methodology for construction of groundwater protection maps,” Moscow, 1984.
[34] S. Foster, “Fundamental Concepts in Aquifer Vulnerability, Pollution Risk and Protection Strategy,” in International Conference, 1987, Noordwijk Aan Zee, the Netherlands Vulnerability of Soil and Groundwater to Pollutants, 1987, pp. 69–86.
[35] A. Zaporožec, J. Vrba, and I. A. of Hydrogeologists, Guidebook on mapping groundwater vulnerability. Hannover : H. Heise, 1994.
[36] E. Commission, “Vulnerability and Risk Mapping,” 2003.
[37] D. Daly et al., “Main concepts of the ‘European approach’ to karst-groundwater-vulnerability assessment and mapping,” Hydrogeol. J., vol. 10, no. 2, pp. 340–345, 2002, doi: 10.1007/s10040-001-0185-1.
[38] P. Kumar, B. K. S. Bansod, S. K. Debnath, P. K. Thakur, and C. Ghanshyam, “Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation,” Environ. Impact Assess. Rev., vol. 51, no. February, pp. 38–49, 2015, doi: 10.1016/j.eiar.2015.02.001.
[39] T. Y. Stigter, L. Ribeiro, and A. M. M. Carvalho Dill, “Application of a groundwater quality index as an assessment and communication tool in agro-environmental policies - Two Portuguese case studies,” J. Hydrol., vol. 327, no. 3–4, pp. 578–591, 2006, doi: 10.1016/j.jhydrol.2005.12.001.
[40] K. G. Villholth, “Groundwater assessment and management: Implications and opportunities of globalization,” Hydrogeol. J., vol. 14, no. 3, pp. 330–339, 2006, doi: 10.1007/s10040-005-0476-z.
[41] B. Morris and S. Foster, “Cryptosporidium Contamination Hazard Assessment And Risk Management For British Groundwater Sources,” no. April 2000, 2015, doi: 10.2166/wst.2000.0117.
[42] A. Finizio and S. Villa, “Environmental risk assessment for pesticides: A tool for decision making,” Environ. Impact Assess. Rev., vol. 22, no. 3, pp. 235–248, 2002, doi: https://doi.org/10.1016/S0195-9255(02)00002-1.
[43] S. Foster and B. Morris, “Assessment of groundwater pollution risk,” 2001. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.5322&rep=rep1&type=pdf.
[44] M. V. Civita, “Assessing Groundwater Contamination Risk using ArcInfo via GRID function,” 2006, p. 591, [Online]. Available: https://proceedings.esri.com/library/userconf/proc97/proc97/to600/pap591/p591.htm.
[45] Y. Zhou and W. Li, “Groundwater quality monitoring and assessment,” Hydrogeol. Eng. Geol., vol. 35, pp. 1–11, 2008.
[46] R. C. Gogu, V. Hallet, and A. Dassargues, “Comparison of aquifer vulnerability assessment techniques. Application to the Néblon river basin (Belgium),” Environ. Geol., vol. 44, no. 8, pp. 881–892, 2003, doi: 10.1007/s00254-003-0842-x.
[47] S. Foster, “Assessment of groundwater pollution risk,” 2001. .
[48] B. A. W. Harbaugh, E. R. Banta, M. C. Hill, and M. G. Mcdonald, “MODFLOW-2000 , The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process,” 2000.
[49] M. P. Anderson, W. W. Woessner, and R. J. Hunt, Applied Simulation of Flow and Advective Transport. Elsevier Inc., 2015.
[50] Michael G. McDonald and Arlen W. Harbaugh, “A Modular Three-dimensional Finite-difference Groundwater Flow Model,” 1984.
[51] M. J. Knowling and A. D. Werner, “Estimability of recharge through groundwater model calibration: Insights from a field-scale steady-state example,” J. Hydrol., vol. 540, pp. 973–987, 2016, doi: 10.1016/j.jhydrol.2016.07.003.
[52] H. M. Baalousha, “Development of a groundwater flow model for the highly parameterized Qatar aquifers,” Model. Earth Syst. Environ., vol. 2, no. 2, pp. 1–11, 2016, doi: 10.1007/s40808-016-0124-8.
[53] R. Maheswaran et al., “Regional scale groundwater modelling study for Ganga River basin,” J. Hydrol., vol. 541, pp. 727–741, 2016, doi: 10.1016/j.jhydrol.2016.07.029.
[54] A. Singh, “Groundwater modelling for the assessment of water management alternatives,” J. Hydrol., vol. 481, pp. 220–229, 2013, doi: 10.1016/j.jhydrol.2012.12.042.
[55] M. Mahmoudpour, M. Khamehchiyan, M. R. Nikudel, and M. R. Ghassemi, “Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran,” Eng. Geol., vol. 201, no. 2016, pp. 6–28, 2016, doi: 10.1016/j.enggeo.2015.12.004.
[56] L. Mi, H. Xiao, J. Zhang, Z. Yin, and Y. Shen, “Evolution of the groundwater system under the impacts of human activities in Evolution of the groundwater system under the impacts of human activities in middle reaches of Heihe River Basin ( Northwest China ) from 1985 to 2013,” Hydrogeol. J., vol. 24, pp. 971–986, 2016, doi: 10.1007/s10040-015-1346-y.
[57] P. S. Huang and Y. C. Chiu, “A simulation-optimization model for seawater intrusion management at Pingtung coastal area, Taiwan,” Water (Switzerland), vol. 10, no. 3, pp. 1–28, 2018, doi: 10.3390/w10030251.
[58] Y. Lin, Y. Chen, L. Chang, M. Yeh, G. Huang, and J. R. Petway, “Groundwater simulations and uncertainty analysis using MODFLOW and geostatistical approach with conditioning multi-aquifer spatial covariance,” Water (Switzerland), vol. 9, p. 164, 2017, doi: 10.3390/w9030164.
[59] S. C. P. De Carvalho, K. J. Carden, and N. P. Armitage, “Application of a sustainability index for integrated urban water management in Southern African cities: Case study comparison - Maputo and Hermanus,” Water SA, vol. 35, no. 2, pp. 144–151, 2009, doi: 10.4314/wsa.v35i2.76727.
[60] M. Saisana and S. Tarantola, “State-of-the-art Report on Current Methodologies and Practices for Composite Indicator Development,” Jt. Res. Centre. Italy Eur. Comm., no. July, pp. 1–72, 2002.
[61] R. K. Singh, H. R. Murty, S. K. Gupta, and A. K. Dikshit, “An overview of sustainability assessment methodologies,” Ecol. Indic., vol. 15, no. 1, pp. 281–299, 2012, doi: 10.1016/j.ecolind.2011.01.007.
[62] A. J. Witkowski, A. Kowalczyk, and J. Vrba, Groundwater Vulnerability Assessment and Mapping: IAH-Selected Papers. 2007.
[63] M. Lavapuro, A. Lipponen, A. Artimo, and T. S. Katko, “Groundwater sustainability indicators : testing with Finnish data,” Boreal Environ. Res., vol. 13, no. October, pp. 381–402, 2008.
[64] R. Hirata, A. Suhogusoff, and A. Fernandes, “Groundwater resources in the State of São Paulo ( Brazil ):,” An. Acad. Bras. Cienc., vol. 79, no. 1, pp. 141–152, 2007, doi: 10.1590/S0001-37652007000100016.
[65] M. Perez, O. Tujchneider, and D. Elı, “Sustainability indicators of groundwater resources in the central area of Santa Fe province , Argentina,” Environ. Earth Sci., vol. 73, pp. 2671–2682, 2015, doi: 10.1007/s12665-014-3181-1.
[66] S. M. Hosseini, E. Parizi, B. Ataie-Ashtiani, and C. T. Simmons, “Assessment of sustainable groundwater resources management using integrated environmental index: Case studies across Iran,” Sci. Total Environ., vol. 676, pp. 792–810, 2019, doi: 10.1016/j.scitotenv.2019.04.257.
[67] K. C. Hsu, C. H. Wang, K. C. Chen, C. T. Chen, and K. W. Ma, “Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan,” Hydrogeol. J., vol. 15, no. 5, pp. 903–913, 2007, doi: 10.1007/s10040-006-0137-x.
[68] J. Li, “Estimation of Groundwater Recharge Amount by Using Chloride Ion Balance Method-A Case Study of Pingtung Plain,” in Proceedings of the Second Conference on Groundwater Resources and Water Quality Protection, 1997, p. pp.703-714.
[69] J. C. Hu, H. T. Chu, C. S. Hou, T. H. Lai, R. F. Chen, and P. F. Nien, “The contribution to tectonic subsidence by groundwater abstraction in the Pingtung area, southwestern Taiwan as determined by GPS measurements,” Quat. Int., vol. 147, no. 1, pp. 62–69, 2006, doi: 10.1016/j.quaint.2005.09.007.
[70] F. J. Chang, C. W. Huang, S. T. Cheng, and L. C. Chang, “Conservation of groundwater from over-exploitation—Scientific analyses for groundwater resources management,” Sci. Total Environ., vol. 598, no. 1, pp. 828–838, 2017, doi: 10.1016/j.scitotenv.2017.04.142.
[71] Taiwan WRA, “Application Network of Hydrological Data,” 2012. [Online]. Available: http://gweb.wra.gov.tw/HydroApplication/index.aspx.
[72] C.-Y. Chiang, “Hydrogeological Survey of Pingtung Plain with the Project of Groundwater Observation Network in Taiwan,” Taipei, Taiwan, 2002.
[73] Taiwan DGBSAS, “The Inquiry System of Agriculture, Forestry, Fishery and Pasturage Data in Taiwan Townships in 2005,” 2005. [Online]. Available: http://win.dgbas.gov.tw/agr/ics_main.asp.
[74] A. Rahman, “A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India,” Appl. Geogr., vol. 28, no. 1, pp. 32–53, 2008, doi: 10.1016/j.apgeog.2007.07.008.
[75] S. Kaliraj, N. Chandrasekar, T. S. Peter, S. Selvakumar, and N. S. Magesh, “Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model,” Environ. Monit. Assess., vol. 187, no. 1, p. 4073, Nov. 2014, doi: 10.1007/s10661-014-4073-2.
[76] R. C. M. Nobre, O. C. Rotunno Filho, W. J. Mansur, M. M. M. Nobre, and C. A. N. Cosenza, “Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool,” J. Contam. Hydrol., vol. 94, no. 3–4, pp. 277–292, 2007, doi: 10.1016/j.jconhyd.2007.07.008.
[77] W. S. Jang, B. Engel, J. Harbor, and L. Theller, “Aquifer vulnerability assessment for sustainable groundwater management using DRASTIC,” Water (Switzerland), vol. 9, no. 10, p. 792, 2017, doi: 10.3390/w9100792.
[78] J. Wang, J. He, and H. Chen, “Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China,” Sci. Total Environ., vol. 432, pp. 216–226, 2012, doi: 10.1016/j.scitotenv.2012.06.005.
[79] S. Saida, H. Tarik, A. Abdellah, H. Farid, and B. Hakim, “Assessment of groundwater vulnerability to nitrate based on the optimised DRASTIC models in the GIS environment (Case of Sidi Rached Basin, Algeria),” Geosciences, vol. 7, no. 2, p. 20, 2017, doi: 10.3390/geosciences7020020.
[80] S. Javadi, N. Kavehkar, K. Mohammadi, A. Khodadadi, and R. Kahawita, “Calibrating DRASTIC using field measurements, sensitivity analysis and statistical methods to assess groundwater vulnerability,” Water Int., vol. 36, no. 6, pp. 719–732, 2011, doi: 10.1080/02508060.2011.610921.
[81] M. G. Rupert, “Calibration of the DRASTIC Ground Water Mapping Method,” Ground Water, pp. 625–630, 2001, doi: 10.1111/j.1745-6584.2001.tb02350.x.
[82] D. Thirumalaivasan, M. Karmegam, and K. Venugopal, “AHP-DRASTIC: Software for specific aquifer vulnerability assessment using DRASTIC model and GIS,” Environ. Model. Softw., vol. 18, no. 7, pp. 645–656, 2003, doi: 10.1016/S1364-8152(03)00051-3.
[83] S. Secunda, M. L. Collin, and A. J. Melloul, “Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region,” J. Environ. Manage., vol. 54, no. 1, pp. 39–57, 1998, doi: 10.1006/jema.1998.0221.
[84] G. P. Panagopoulos, A. K. Antonakos, and N. J. Lambrakis, “Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS,” Hydrogeol. J., vol. 14, no. 6, pp. 894–911, 2006, doi: 10.1007/s10040-005-0008-x.
[85] M. Sadat-Noori and K. Ebrahimi, “Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model,” Environ. Monit. Assess., vol. 188, no. 1, pp. 1–18, 2016, doi: 10.1007/s10661-015-4915-6.
[86] M. W. Toews and D. M. Allen, “Evaluating different GCMs for predicting spatial recharge in an irrigated arid region,” J. Hydrol., vol. 374, no. 3–4, pp. 265–281, 2009, doi: 10.1016/j.jhydrol.2009.06.022.
[87] L. Ribeiro, “Um novo índice de vulnerabilidade específico de aquíferos. Formulação e aplicações.[SI: a new index of aquifer susceptibility to agricultural pollution],” 2000.
[88] N. Kazakis and K. S. Voudouris, “Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters,” J. Hydrol., vol. 525, pp. 13–25, 2015, doi: 10.1016/j.jhydrol.2015.03.035.
[89] S. Goudarzi, S. A. Jozi, S. M. Monavari, A. Karbasi, and A. H. Hasani, “Assessment of groundwater vulnerability to nitrate pollution caused by agricultural practices,” Water Qual. Res., pp. 1–15, 2017, doi: 10.2166/wqrjc.2017.031.
[90] T. L. Saaty, The Analytical Hierarchy Process. McGraw-Hill, New York, 1980.
[91] W. Ho, “Integrated analytic hierarchy process and its applications - A literature review,” Eur. J. Oper. Res., vol. 186, no. 1, pp. 211–228, 2008, doi: 10.1016/j.ejor.2007.01.004.
[92] W. A. Lodwick, W. Monson, and L. Svoboda, “Attribute error and sensitivity analysis of map operations in geographical informations systems: Suitability analysis,” Int. J. Geogr. Inf. Syst., vol. 4, no. 4, pp. 413–428, 1990, doi: 10.1080/02693799008941556.
[93] P. Napolitano and A. G. Fabbri, “Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS,” IAHS Publ., no. 235, pp. 559–566, 1996.
[94] Napolitano P, Fabbri A.G., “Single parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: Proceedings of the 2nd HydroGIS conference,” IAHS Publ., vol. 235, no. 235, pp. 559–566, 1996.
[95] R. Bisson and J. H. Lehr, Modern Groundwater Exploration. John Wiley & Sons, 2004.
[96] Y. Hong and R. F. Adler, “Estimation of global SCS curve numbers using satellite remote sensing and geospatial data,” vol. 29, no. 2, pp. 471–477, 2008, doi: 10.1080/01431160701264292.
[97] M. Anane, B. Abidi, F. Lachaal, A. Limam, and S. Jellali, “GIS-based DRASTIC, Pesticide DRASTIC and the Susceptibility Index (SI): comparative study for evaluation of pollution potential in the Nabeul-Hammamet shallow aquifer, TunisiaDRASTIC-SIG, DRASTIC Pesticide et Indice de Sensibilité (SI) : étude comparative,” Hydrogeol. J., vol. 21, no. 3, pp. 715–731, 2013, doi: 10.1007/s10040-013-0952-9.
[98] Taiwan Central Geological Survey (CGS), “Hydrogeological Survey Report of Pingtung Plain, Taiwan,” 2002.
[99] I. Chenini, A. Zghibi, and L. Kouzana, “Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: State of the art and a case study,” J. African Earth Sci., vol. 109, pp. 11–26, 2015, doi: 10.1016/j.jafrearsci.2015.05.008.
[100] R. Krishna et al., “Groundwater vulnerability to pollution mapping of Ranchi district using GIS,” Appl. Water Sci., vol. 5, no. 4, pp. 345–358, 2014, doi: 10.1007/s13201-014-0198-2.
[101] H. Assaf and M. Saadeh, “Geostatistical assessment of groundwater nitrate contamination with reflection on DRASTIC vulnerability assessment: The case of the upper Litani basin, Lebanon,” Water Resour. Manag., vol. 23, no. 4, pp. 775–796, 2009, doi: 10.1007/s11269-008-9299-8.
[102] H. Huan, J. Wang, and Y. Teng, “Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China,” Sci. Total Environ., vol. 440, pp. 14–23, 2012, doi: 10.1016/j.scitotenv.2012.08.037.
[103] I. Babiker, M. A.A. Mohamed, T. Hiyama, and K. Kato, “A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan,” Sci. Total Environ., vol. 345, pp. 127–140, 2005, doi: 10.1016/j.scitotenv.2004.11.005.
[104] I. Ahmed, Y. Nazzal, F. K. Zaidi, N. S. N. Al-Arifi, H. Ghrefat, and M. Naeem, “Hydrogeological vulnerability and pollution risk mapping of the Saq and overlying aquifers using the DRASTIC model and GIS techniques, NW Saudi Arabia,” Environ. Earth Sci., vol. 74, no. 2, 2015, doi: 10.1007/s12665-015-4120-5.
[105] G. Busico et al., “A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses,” Water Res., vol. 171, p. 115386, 2020, doi: 10.1016/j.watres.2019.115386.
[106] E. Sener, S. Sener, and A. Davraz, “Assessment of aquifer vulnerability based on GIS and DRASTIC methods: A case study of the Senirkent-Uluborlu Basin (Isparta, Turkey),” Hydrogeol. J., vol. 17, no. 8, pp. 2023–2035, 2009, doi: 10.1007/s10040-009-0497-0.
[107] B. Dixon, “Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability : a GIS-based sensitivity analysis,” J. Hydrol., vol. 309, pp. 17–38, 2005, doi: 10.1016/j.jhydrol.2004.11.010.
[108] M. A. Baghapour et al., “Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran,” J. Environ. Heal. Sci. Eng., vol. 14, no. 1, 2016, doi: 10.1186/s40201-016-0254-y.
[109] Y. Zhou, “A critical review of groundwater budget myth, safe yield and sustainability,” J. Hydrol., vol. 370, no. 1–4, pp. 207–213, 2009, doi: 10.1016/j.jhydrol.2009.03.009.
[110] W.-C. Li, C.-F. Ni, C.-H. Tsai, and Y.-M. Wei, “Effects of hydrogeological properties on sea-derived benzene transport in unconfined coastal aquifers,” Environ. Monit. Assess., vol. 188, no. 5, p. 307, 2016, doi: 10.1007/s10661-016-5307-2.
[111] Y.-S. Su, C.-F. Ni, W.-C. Li, I.-H. Lee, and C.-P. Lin, “Applying deep learning algorithms to enhance simulations of large-scale groundwater flow in IoTs,” Appl. Soft Comput., vol. 92, p. 106298, 2020, doi: https://doi.org/10.1016/j.asoc.2020.106298.
[112] T. Russo, K. Alfredo, and J. Fisher, “Sustainable Water Management in Urban, Agricultural, and Natural Systems,” Water (Switzerland), vol. 6, pp. 3934–3956, 2014, doi: 10.3390/w6123934.
[113] I. Juwana, N. Muttil, and B. J. C. Perera, “Indicator-based water sustainability assessment — A review,” Sci. Total Environ., vol. 438, pp. 357–371, 2012, doi: 10.1016/j.scitotenv.2012.08.093.
[114] Doherty J., PEST Model-Independent Parameter Estimation, vol. 2005. Watermark Computing, Corinda, Australia, 2010.
[115] J. Doherty and J. M. Johnston, “Methodologies for calibration and predictive analysis of a watershed model,” J. Am. Water Resour. Assoc., vol. 30605, pp. 251–265, 2003.
[116] M. C. Hill and Cl. R. Tiedeman, Effective groundwater model calibration. John Wiley & Sons Inc., USA, 2007.
[117] M. Sophocleous, “From safe yield to sustainable development of water resources - The Kansas experience,” J. Hydrol., vol. 235, no. 1–2, pp. 27–43, 2000, doi: 10.1016/S0022-1694(00)00263-8.
[118] T.-D. D. Vu, C.-F. F. Ni, W.-C. C. Li, M.-H. H. Truong, and M.-H. Vu, T.-D.; Ni, C.-F.; Li, W.-C.; Truong, “Modified index-overlay method to assess spatial – temporal variations of groundwater vulnerability and groundwater contamination risk in areas with variable activities of agriculture developments,” Water (Switzerland), vol. 11, no. 12, p. 2492, 2019, doi: https://doi.org/10.3390/w11122492.
[119] S. G. Cameron and P. A. White, “Determination of key indicators to assess groundwater quantity in New Zealand aquifers,” Wellington, New Zealand, 2004.
[120] J. M. Sharp, “The impacts of urbanization on groundwater systems and recharge,” AQUAmundi, vol. 01, no. april, pp. 1–6, 2010, doi: 10.4409/Am-004-10-0008.
[121] C. S. Ting, “Application of a groundwater model in the dispute among water users in the Pingtung Coastal Plain, Taiwan,” in In Proceedings of international workshop on groundwater and environment, 1992, pp. 332–345.
[122] J. Doherty, “Ground water model calibration using pilot points and regularization,” Groundwater, vol. Vol. 41, N, pp. 170–177, 2005, doi: https://doi.org/10.1111/j.1745-6584.2003.tb02580.x.
[123] IPCC Climate Change, The scientific basis: contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press, 2001.
[124] N. S. Council, “Climate Change in Taiwan : Scientific Report 2011,” 2011.
[125] C. Vörösmarty et al., “Humans transforming the global water system,” Eos Trans. Am. Geophys. Union, vol. 85, no. 48, pp. 509–520, 2004, doi: 10.1029/2004EO480001.
[126] C. Koreimann, J. Grath, G. Winkler, W. Nagy, and W. R. Vogel, “Groundwater monitoring in Europe,” Copenhagen K, Denmark, 1996. [Online]. Available: http://water.eionet.europa.eu.
[127] G. Jousma and F. J. Roelofsen, “World-wide inventory on groundwater monitoring,” no. October, 2004.
[128] L. A. Zadeh, “Toward a generalized theory of uncertainty (GTU)- An outline,” Inf. Sci. (Ny)., vol. 172, no. 1–2, pp. 1–40, 2005, doi: 10.1016/j.ins.2005.01.017.
[129] E. Moges, Y. Demissie, L. Larsen, and F. Yassin, “Review: Sources of hydrological model uncertainties and advances in their analysis,” Water (Switzerland), vol. 13, no. 1, pp. 1–23, 2021, doi: 10.3390/w13010028.
[130] A. E. Hassan, H. M. Bekhit, and J. B. Chapman, “Uncertainty assessment of a stochastic groundwater flow model using GLUE analysis,” J. Hydrol., vol. 362, no. 1–2, pp. 89–109, 2008, doi: 10.1016/j.jhydrol.2008.08.017.
[131] K. Loague and R. E. Green, “Statistical and graphical methods for evaluating solute transport models: Overview and application,” J. Contam. Hydrol., vol. 7, no. 1–2, pp. 51–73, 1991, doi: 10.1016/0169-7722(91)90038-3.
[132] K. Loague, J. S. Blanke, M. B. Mills, R. Diaz-Diaz, and D. L. Corwin, “Data Related Uncertainty in Near-Surface Vulnerability Assessments for Agrochemicals in the San Joaquin Valley,” J. Environ. Qual., vol. 41, no. 5, pp. 1427–1436, 2012, doi: 10.2134/jeq2011.0443.
[133] J. J. Gurdak, J. E. McCray, G. Thyne, and S. L. Qi, “Latin hypercube approach to estimate uncertainty in ground water vulnerability,” Ground Water, vol. 45, no. 3, pp. 348–361, 2007, doi: 10.1111/j.1745-6584.2006.00298.x.
[134] A. Coppola et al., “A Stochastic Texture-based Approach for Evaluating Solute Travel Times to Groundwater at Regional Scale by Coupling GIS and Transfer Function,” Procedia Environ. Sci., vol. 19, pp. 711–722, 2013, doi: 10.1016/j.proenv.2013.06.080.
[135] P. A. Burrough, “Principles of geographical information systems for land resources assessment,” Geocarto Int., vol. 1, no. 3, p. 54, 1986, doi: 10.1080/10106048609354060.
[136] M. F. Goodchild and O. Dubuc, “A model of error for choropleth maps, with applications to geographic information systems,” in Proceedings, AutoCarto 8, 1987, pp. 165–174.
[137] N. A. Eisenberg, L. D. Richerstein, and C. Voss, “Performance assessment, site characterization, and sensitivity and uncertainty methods: Their necessary association for licensing,” in Proceedings of the Conference on Geostatistical, Sensitivity, and Uncertainty Methods for Ground-Water Flow and Radionuclide Transport Modeling, 1989, pp. 9–38.
[138] A. Brandtetter and B. E. Buxton, “The role of geostatistical, sensitivity and uncertainty analysis in performance assessment,” in Geostatistical, Sensitivity, and Uncertainty Methods for Groundwater Flow and Radionuclide Transport Modeling, 1989, pp. 89–220.
[139] W. A. Jury and J. Gruber, “A stochastic analysis of the influence of soil and climatic variability on the estimate of pesticide groundwater pollution potential,” vol. 25, no. 12, pp. 2465–2474, 1989, doi: 10.1029/WR025i012p02465.
[140] M. J. Small and J. R. Mular, “Long‐term pollutant degradation in the unsaturated zone with stochastic rainfall infiltration,” Water Resour. Res., vol. 23, no. 12, pp. 2246–2256, 1987, doi: 10.1029/WR023i012p02246.
[141] C. F. Ni, S. G. Li, C. J. Liu, and S. M. Hsu, “Efficient conceptual framework to quantify flow uncertainty in large-scale, highly nonstationary groundwater systems,” J. Hydrol., vol. 381, no. 3–4, pp. 297–307, 2010, doi: 10.1016/j.jhydrol.2009.12.002.
[142] C. S. Jang and C. W. Liu, “Geostatistical analysis and conditional simulation for estimating the spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan,” Hydrol. Process., vol. 18, no. 7, pp. 1333–1350, 2004, doi: 10.1002/hyp.1397.
[143] M. Bianchi, T. Kearsey, and A. Kingdon, “Integrating deterministic lithostratigraphic models in stochastic realizations of subsurface heterogeneity. Impact on predictions of lithology, hydraulic heads and groundwater fluxes,” J. Hydrol., p., 2015, doi: 10.1016/j.jhydrol.2015.10.072.
[144] P. K. Kitanidis, “Groundwater flow in heterogeneous formations,” in Subsurface Flow and Transport: A Stochastic Approach, G. Dagan and S. P. E. Neuman, Eds. Cambridge University Press, 1997, pp. 83–91.
[145] D. Zhang, Stochastic Methods for Flow in Porous Media: Coping With Uncertainties. 2002.
[146] O. Baskan, H. Cebel, S. Akgul, and G. Erpul, “Conditional simulation of USLE/RUSLE soil erodibility factor by geostatistics in a Mediterranean catchment, Turkey,” Environ. Earth Sci., vol. 60, no. 6, pp. 1179–1187, 2010, doi: 10.1007/s12665-009-0259-2.
[147] C. V Deutsch and A. G. Journel, “GSLIB : Geostatistical Software Library and User ’ s Guide Second Edition Preface to the Second Edition,” p. 366, 1998.
[148] J. J. Gómez-Hernández and A. G. Journel, “Joint Sequential Simulation of MultiGaussian Fields,” Geostatist., no. 1, A. Soares, Ed. Springer, Dordrecht, 1993, pp. 85–94.
[149] E. H. Isaaks and M. R. Srivastava, “Applied geostatistics,” Choice Rev. Online, vol. 28, no. 01, pp. 28-0304-28–0304, 1990, doi: 10.5860/choice.28-0304.
[150] J. R. Eggleston, S. A. Rojstaczer, and J. J. Peirce, “Identification of hydraulic conductivity structure in sand and gravel aquifers: Cape Cod data set,” Water Resour. Res., vol. 32, no. 5, pp. 1209–1222, 1996, doi: 10.1029/96WR00272.
[151] T.-D. Vu, C.-F. Ni, W.-C. Li, M.-H. Truong, and S. M. Hsu, “Predictions of groundwater vulnerability and sustainability by an integrated index-overlay method and physical-based numerical model,” J. Hydrol., vol. 596, p. 126082, 2021, doi: 10.1016/j.jhydrol.2021.126082.
[152] P. White, C. L. Ruble, and M. E. Lane, “The effect of changes in land use on nitrate concentration in water supply wells in southern Chester County, Pennsylvania,” Environ. Monit. Assess., vol. 185, no. 1, pp. 643–651, 2013, doi: 10.1007/s10661-012-2581-5.
[153] M. Arauzo, “Vulnerability of groundwater resources to nitrate pollution: A simple and effective procedure for delimiting Nitrate Vulnerable Zones,” Sci. Total Environ., vol. 575, pp. 799–812, 2017, doi: 10.1016/j.scitotenv.2016.09.139.
[154] A. Elçi, “Calibration of groundwater vulnerability mapping using the generalized reduced gradient method,” J. Contam. Hydrol., vol. 207, pp. 39–49, 2017, doi: 10.1016/j.jconhyd.2017.10.008.
[155] Agriculture Engineering Research Center, “Survey, analysis and assessment of groundwater quality in Taiwan areas in 2009,” 2009.
[156] T. Y. Stigter, L. Ribeiro, and A. M. M. Carvalho Dill, “Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal,” Hydrogeol. J., vol. 14, no. 1–2, pp. 79–99, 2006, doi: 10.1007/s10040-004-0396-3. |