博碩士論文 105684604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:52.15.78.119
姓名 武進德(Vu Tien Duc)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 發展耦合指數疊加與物理模型以進行屏東平原地下水盆地脆弱度之動態評估
(Development of Coupled Index-Overlay and Physical Models for Assessing Dynamics of Groundwater Vulnerability in Pingtung Plain Groundwater Basin, Taiwan)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文提出一個結合指數疊加法與物理基底數值模型的概念,以評估台灣南部屏東地下水盆地的地下水脆弱性(GV)和可持續性。研究一開始使用經土地利用因素的層次分析法(AHP)修改後的DRASTIC法,量化通過現地驗證的地下水脆弱性和地下水污染風險的時空變化,並藉此創建DRASTIC的參數空間分布。研究中使用MODFLOW模型以預測未來在不同氣候條件下的地下水脆弱性與評估地下水資源可持續性的現狀。本研究更另外採用逐步高斯模擬(SGS)的隨機方法獲得不同的隨機水力傳導係數空間分布以量化其不確定性。經量化後的水頭和水力傳導係數不確定性將添加到改進後AHP-DRASTIC模型的水深和水力傳導係數參數之中,從而量化地下水脆弱性的不確定性。
研究結果顯示在過去的20年(1995-2017)內,由於土地利用變化導致農業面積減少造成GV略有下降。在DRASTIC參數中使用依年度或更短觀測期的土地利用圖,將可以在特定地點條件下獲得更好的GV分布。同時年度污染風險圖表示,九如鄉和里港鄉自2016年以來便面臨著較高的硝酸鹽污染風險。屏東地下水盆地的鹽埔鄉,長治鄉和高樹鄉等其他農業區,氣候條件對於地下水污染風險的時間變化造成的影響較小。
此外,從地下水模型獲得的水深和淨補注量可以提高地下水脆弱性的預測準確性。研究結果表明屏東平原地下水盆地內的密集河網控制了淺層地下水位,因此氣候條件不會顯著影響GV的變化,其對地下水污染風險的影響也相對較低。另外通過對可持續性指標的分析,我們發現屏東平原地下水盆地的地下水資源系統處於高脆弱性的臨界狀態。
對於所有的所有GV類型而言,輸入參數的不確定性會使 GV值的結果在空間分佈和強度上出現很大的差異。輸入參數的不確定性對於GV的變化影響取決於參數值在其類型中的變化。隨機的GV能較原始GV更能驗證現場的硝酸鹽濃度,較高的 GV不確定性主要分佈在河流附近,主要是因為受到了地下水位和水力傳導係數變化的控制。
摘要(英) This study aims to propose a concept that integrates the index-overlay method and a physical-based numerical model to assess the dynamic of groundwater vulnerability (GV) and sustainability in the Pingtung groundwater basin in southern Taiwan. In the current study, the conventional DRASTIC was initially modified using the analytical hierarchy process (AHP) incorporated with land-use factors to quantify the spatial-temporal variation of groundwater vulnerability and groundwater contamination risk validated by field measurement data. The relevant data were collected to create the DRASTIC parameter maps. The physical-based MODFLOW model was also used to predict future groundwater vulnerability under different climate conditions and evaluate the current state of groundwater resource sustainability. A stochastic approach using Sequential Gaussian Simulation (SGS) is then employed to obtain the limited sets of realization of hydraulic conductivity and simulate hydraulic head realization and quantify their uncertainties. The information on hydraulic head and conductivities’ uncertainties will be added to the depth of water and hydraulic conductivity of the modified-AHP-DRASTIC model, whereby quantifying the uncertainty of groundwater vulnerability.
Results showed that the GV has slightly decreased due to decreased agricultural areas under land-use change over two decades (1995-2017). The yearly changes or a shorter period of observations incorporated with the accurate land-use map in DRASTIC parameters can improve GV maps to obtain a better representation of site-specific conditions. Meanwhile, the maps of yearly contamination risk indicated that the counties of Jiuru and Ligang were at high risk of nitrate pollution since 2016. In other agriculture dominated regions such as Yanpu, Changzhi, and Gaoshu in the Pingtung groundwater basin, the climate conditions influence less the temporal variations of groundwater contamination risk.
In addition, the depth of water and net recharge obtained from the groundwater model can improve the accuracy of the groundwater vulnerability prediction. Climate conditions do not significantly affect GV variations because of the dense river network that controls the shallow groundwater levels in the Pingtung plain groundwater basin. Therefore, the influence of climate conditions on the risk of groundwater contamination is also relatively low. Based on the analysis of the sustainability indicators, we found that the groundwater resource system in the Pingtung plain groundwater basin is in a critical condition of high vulnerability.
Accordingly, the large discrepancies of GV values occurred in both the spatial distribution and intensity in all GV classes when the uncertainty information of input parameters was added to GV mapping. The uncertainty information of the input parameters may affect the variation of GV slightly that depends on the variation of parameter values in their value classes. The stochastic-based GV performs a better match of nitrate concentration than the original GV. High GV uncertainty is mostly distributed near the rivers, which significantly controlled the variability of groundwater levels and hydraulic conductivity.
關鍵字(中) ★ 指數疊加法
★ DRASTIC
★ 數值模型
★ MODFLOW
★ 地下水脆弱性
★ 地下水可持續性
關鍵字(英) ★ index-overlay method
★ DRASTIC
★ numerical model
★ MODFLOW
★ groundwater vulnerability
★ groundwater sustainability
論文目次 Table of Contents
Abstract i
Acknowledgments iv
Table of Contents v
List of Figures ix
List of Tables xii
Chapter 1. Introduction 1
1.1 Background 1
1.2 Problem Statements 5
1.3 Research Objectives 5
1.4 Outline of the study 7
Chapter 2. Literature Review 9
2.1 Groundwater Vulnerability 9
2.1.1 Definitions of groundwater vulnerability 9
2.1.2 Methods of GV assessment 11
2.2 Groundwater Contamination Risk 13
2.3 Groundwater Numerical Modeling 15
2.4 Groundwater Sustainability 17
Chapter 3. Description of the study area 19
3.1 Geography 19
3.2 Climate Conditions 19
3.2.1 Rainfall 19
3.2.2 Temperature 20
3.2.3 Evaporation 21
3.3 Hydrology 21
3.4 Geology and Hydrogeology 23
3.4.1 Geology 23
3.4.2 Hydrogeology 26
3.5 Groundwater Resources 28
Chapter 4. Spatial-temporal Variations of Groundwater Vulnerability and Groundwater Contamination Risks 31
4.1 Introduction 31
4.2 Methodologies 34
4.2.1 The modified-DRASTIC Method 34
4.2.2 Analytical Hierarchy Process (AHP) 35
4.2.3 Groundwater Contamination Risk 37
4.2.4 The research flowchart 38
4.3 Development of DRASTIC Parameters 40
4.3.1 Depth to water (D) 40
4.3.2 Net recharge (R) 41
4.3.3 Aquifer media (A) 42
4.3.4 Soil media (S) 42
4.3.5 Topography (T) 43
4.3.6 Impact of the vadose zone (I) 45
4.3.7 Hydraulic conductivity 45
4.3.8 Land use (LU) 46
4.4 Results and Discussion 47
4.4.1 Assessment of groundwater vulnerability with different DRASTIC models 47
4.4.2 Validation of GVs and the influence of long- and short-term data on the GVs 48
4.4.3 The variations of GV induced by the change of land use 51
4.4.4 The mapping of groundwater contamination risk 53
4.4.5 Sensitivity analysis 58
Chapter 5. Predictions of Groundwater Vulnerability and Sustainability 63
5.1 Introduction 63
5.2 Methodologies 67
5.2.1 The conceptual framework 67
5.2.2 Groundwater flow model 69
5.2.3 Sustainability indicators 71
5.2.4 Conceptual model of groundwater flow 74
5.2.5 Model calibration 75
5.2.6 Climate scenarios 76
5.3 Results and Discussion 77
5.3.1 Physical-based GW model 77
5.3.2 Iterative DRASTIC model 79
5.3.3 The variation of GV induced by climate conditions 81
5.3.4 The sustainability assessment of GW resources 85
Chapter 6. Uncertainty Analysis of Groundwater Vulnerability 90
6.1 Introduction 90
6.2 Methodologies 93
6.2.1 The flowchart of research 93
6.2.2 Stochastic simulation 94
6.3 Results and Discussion 96
6.3.1 Analysis of semi-variogram 96
6.3.2 Conditional and unconditional geostatiscal simulations 97
6.3.3 Assessments of the stochastic-based GW vulnerability 102
6.3.4 Validation of GV mapping 104
6.3.5 Uncertainty analysis of GV mapping 105
Chapter 7. Conclusions and Recommendations 107
7.1 Conclusions 107
7.2 Recommendations for Future Research 109
Bibliography 111
Appendix 129
參考文獻 [1] I. A. Shiklomanov, “World water resources. A new appraisal and assessment for the 21st century,” 1998.
[2] S. Siebert et al., “Groundwater use for irrigation - A global inventory,” Hydrol. Earth Syst. Sci., vol. 14, no. 10, pp. 1863–1880, 2010, doi: 10.5194/hess-14-1863-2010.
[3] N. R. Council, Ground Water Vulnerability Assessment: Predicting Relative Contamination Potential Under Conditions of Uncertainty. Washington, DC: The National Academies Press, 1993.
[4] R. G. Aronovsky, “Liability theories in contaminated groundwater litigation,” Environ. Forensics, vol. 1, no. 3, pp. 97–116, 2000, doi: 10.1006/enfo.2000.0016.
[5] G. W. Partnership, “Integrated Water Resources Management,” 2000. doi: 10.1201/9781315153292.
[6] Y. Sayato, “WHO Guidelines for Drinking-Water Quality,” Eisei kagaku, vol. 35, no. 5, pp. 307–312, 1989, doi: 10.1248/jhs1956.35.307.
[7] J. D. Arthur, H. A. R. Wood, A. E. Baker, J. R. Cichon, and G. L. Raines, “Development and Implementation of a Bayesian-based Aquifer Vulnerability Assessment in Florida,” Nat. Resour. Res., vol. 16, no. 2, pp. 93–107, 2007, doi: 10.1007/s11053-007-9038-5.
[8] A. Sorichetta, “Groundwater vulnerability assessment using statistical methods,” Università Degli Studi. Ph.D. study, 2010.
[9] G. Aller, L., Bennet, T., Leher, J. H., Petty, R. J., & Hackett, “DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings,” 1987.
[10] M. Focazio, T. E. Reilly, M. G. Rupert, and D. R. Helsel, “Assessing ground-water vulnerability to contamination: Providing scientifically defensible information for decision makers.,” 2002.
[11] E. Sener and A. Davraz, “Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey),” Hydrogeol. J., vol. 21, no. 3, pp. 701–714, 2012, doi: 10.1007/s10040-012-0947-y.
[12] A. Neshat, B. Pradhan, and M. Dadras, “Groundwater vulnerability assessment using an improved DRASTIC method in GIS,” Resour. Conserv. Recycl., vol. 86, pp. 74–86, 2014, doi: 10.1016/j.resconrec.2014.02.008.
[13] S. Sahoo, A. Dhar, A. Kar, and D. Chakraborty, “Index-based groundwater vulnerability mapping using quantitative parameters,” Environ. Earth Sci., vol. 75, no. 6, pp. 1–13, 2016, doi: 10.1007/s12665-016-5395-x.
[14] A. Allah, Z. Sedghi, R. Khatibi, and M. Gharekhani, “Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive model structures Science of the Total Environment Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive,” Sci. Total Environ., vol. 593–594, no. September, pp. 75–90, 2017, doi: 10.1016/j.scitotenv.2017.03.109.
[15] A. A. Nadiri, Z. Sedghi, R. Khatibi, and S. Sadeghfam, “Mapping specific vulnerability of multiple confined and unconfined aquifers by using artificial intelligence to learn from multiple DRASTIC frameworks,” J. Environ. Manage., vol. 227, 2018, doi: 10.1016/j.jenvman.2018.08.019.
[16] C. S. Jang, C. F. Chen, C. P. Liang, and J. S. Chen, “Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain,” J. Hydrol., vol. 533, pp. 541–556, 2016, doi: 10.1016/j.jhydrol.2015.12.023.
[17] C. S. Jang and S. K. Chen, “Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones,” J. Hydrol., vol. 523, pp. 441–451, 2015, doi: 10.1016/j.jhydrol.2015.01.077.
[18] L. Huang, G. Zeng, J. Liang, S. Hua, Y. Yuan, and X. Li, “Combined impacts of land use and climate change in the modeling of future groundwater vulnerability,” J. Hydrol. Eng., vol. 22, no. 7, p. 05017007, 2009, doi: 10.1061/(ASCE)HE.1943-5584.0001493.
[19] R. Li and J. W. Merchant, “Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: A case study in North Dakota, USA,” Sci. Total Environ., vol. 447, pp. 32–45, 2013, doi: 10.1016/j.scitotenv.2013.01.011.
[20] M. L. Lima, K. Zelaya, and H. Massone, “Groundwater vulnerability assessment combining the drastic and Dyna-CLUE model in the Argentine Pampas,” Environ. Manage., vol. 47, no. 5, pp. 828–839, 2011, doi: 10.1007/s00267-011-9652-1.
[21] I. Ouedraogo, P. Defourny, and M. Vanclooster, “Mapping the groundwater vulnerability for pollution at the pan African scale,” Sci. Total Environ., vol. 544, pp. 939–953, 2016, doi: 10.1016/j.scitotenv.2015.11.135.
[22] Y. Zhou and W. Li, “A review of regional groundwater flow modeling,” Geosci. Front., vol. 2, no. 2, pp. 205–214, 2011, doi: 10.1016/j.gsf.2011.03.003.
[23] W. M. Alley, T. E. Reilly, L. O. Franke, N. B. Basu, and K. Van Meter, Sustainability of Groundwater Resources., vol. 4. U.S. Geological Survey Circular 1186, 1999.
[24] S. Gordon, “Sustainable Groundwater Management: Preliminary Approach for Assessing the Sustainability of Groundwater,” 2011. [Online]. Available: http://www.ccme.ca/files/Resources/water/groundwater/Sustainable Groundwater Management - Preliminary Approach for Assessing the Sustainability of Groundwater.pdf.
[25] A. Steinman, “Report to the Michigan Legislature on: Recommended criteria and indicators of groundwater sustainability for the state of Michigan,” 2007. [Online]. Available: http://southeastaquatics.net/resources/pdfs/MI GW_Sustainability_Workshop_report5_196985.pdf.
[26] J. Vrba and A. Lipponen, “Groundwater Resources Sustainability Indicators,” 2007.
[27] C. P. Liang, C. S. Jang, C. W. Liang, and J. S. Chen, “Groundwater vulnerability assessment of the pingtung plain in Southern Taiwan,” Int. J. Environ. Res. Public Health, vol. 13, no. 11, pp. 1–19, 2016, doi: 10.3390/ijerph13111167.
[28] C. S. Ting, Y. Zhou, J. J. De Vries, and I. Simmers, “Development of a preliminary ground water flow model for water resources management in the Pingtung Plain, Taiwan,” Ground Water, vol. 36, no. 1, pp. 20–36, 1998, doi: 10.1111/j.1745-6584.1998.tb01062.x.
[29] H.-M. Füssel, “Vulnerability: A generally applicable conceptual framework for climate change research,” Glob. Environ. Chang., vol. 17, no. 2, pp. 155–167, 2007, doi: https://doi.org/10.1016/j.gloenvcha.2006.05.002.
[30] N. Brooks, “Vulnerability, risk and adaptation: A conceptual framework,” no. 38, 2003.
[31] O. Schmoll, Protecting Groundwater for Health: Managing the Quality of Drinking-water Sources, vol. 12. 2013.
[32] I. C. Popescu, N. Gardin, S. Brouyère, and A. Dassargues, “Groundwater vulnerability assessment using physically-based modelling: From challenges to pragmatic solutions,” IAHS-AISH Publ., no. 320, pp. 83–88, 2008.
[33] M. Vrana, “Methodology for construction of groundwater protection maps,” Moscow, 1984.
[34] S. Foster, “Fundamental Concepts in Aquifer Vulnerability, Pollution Risk and Protection Strategy,” in International Conference, 1987, Noordwijk Aan Zee, the Netherlands Vulnerability of Soil and Groundwater to Pollutants, 1987, pp. 69–86.
[35] A. Zaporožec, J. Vrba, and I. A. of Hydrogeologists, Guidebook on mapping groundwater vulnerability. Hannover : H. Heise, 1994.
[36] E. Commission, “Vulnerability and Risk Mapping,” 2003.
[37] D. Daly et al., “Main concepts of the ‘European approach’ to karst-groundwater-vulnerability assessment and mapping,” Hydrogeol. J., vol. 10, no. 2, pp. 340–345, 2002, doi: 10.1007/s10040-001-0185-1.
[38] P. Kumar, B. K. S. Bansod, S. K. Debnath, P. K. Thakur, and C. Ghanshyam, “Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation,” Environ. Impact Assess. Rev., vol. 51, no. February, pp. 38–49, 2015, doi: 10.1016/j.eiar.2015.02.001.
[39] T. Y. Stigter, L. Ribeiro, and A. M. M. Carvalho Dill, “Application of a groundwater quality index as an assessment and communication tool in agro-environmental policies - Two Portuguese case studies,” J. Hydrol., vol. 327, no. 3–4, pp. 578–591, 2006, doi: 10.1016/j.jhydrol.2005.12.001.
[40] K. G. Villholth, “Groundwater assessment and management: Implications and opportunities of globalization,” Hydrogeol. J., vol. 14, no. 3, pp. 330–339, 2006, doi: 10.1007/s10040-005-0476-z.
[41] B. Morris and S. Foster, “Cryptosporidium Contamination Hazard Assessment And Risk Management For British Groundwater Sources,” no. April 2000, 2015, doi: 10.2166/wst.2000.0117.
[42] A. Finizio and S. Villa, “Environmental risk assessment for pesticides: A tool for decision making,” Environ. Impact Assess. Rev., vol. 22, no. 3, pp. 235–248, 2002, doi: https://doi.org/10.1016/S0195-9255(02)00002-1.
[43] S. Foster and B. Morris, “Assessment of groundwater pollution risk,” 2001. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.5322&rep=rep1&type=pdf.
[44] M. V. Civita, “Assessing Groundwater Contamination Risk using ArcInfo via GRID function,” 2006, p. 591, [Online]. Available: https://proceedings.esri.com/library/userconf/proc97/proc97/to600/pap591/p591.htm.
[45] Y. Zhou and W. Li, “Groundwater quality monitoring and assessment,” Hydrogeol. Eng. Geol., vol. 35, pp. 1–11, 2008.
[46] R. C. Gogu, V. Hallet, and A. Dassargues, “Comparison of aquifer vulnerability assessment techniques. Application to the Néblon river basin (Belgium),” Environ. Geol., vol. 44, no. 8, pp. 881–892, 2003, doi: 10.1007/s00254-003-0842-x.
[47] S. Foster, “Assessment of groundwater pollution risk,” 2001. .
[48] B. A. W. Harbaugh, E. R. Banta, M. C. Hill, and M. G. Mcdonald, “MODFLOW-2000 , The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process,” 2000.
[49] M. P. Anderson, W. W. Woessner, and R. J. Hunt, Applied Simulation of Flow and Advective Transport. Elsevier Inc., 2015.
[50] Michael G. McDonald and Arlen W. Harbaugh, “A Modular Three-dimensional Finite-difference Groundwater Flow Model,” 1984.
[51] M. J. Knowling and A. D. Werner, “Estimability of recharge through groundwater model calibration: Insights from a field-scale steady-state example,” J. Hydrol., vol. 540, pp. 973–987, 2016, doi: 10.1016/j.jhydrol.2016.07.003.
[52] H. M. Baalousha, “Development of a groundwater flow model for the highly parameterized Qatar aquifers,” Model. Earth Syst. Environ., vol. 2, no. 2, pp. 1–11, 2016, doi: 10.1007/s40808-016-0124-8.
[53] R. Maheswaran et al., “Regional scale groundwater modelling study for Ganga River basin,” J. Hydrol., vol. 541, pp. 727–741, 2016, doi: 10.1016/j.jhydrol.2016.07.029.
[54] A. Singh, “Groundwater modelling for the assessment of water management alternatives,” J. Hydrol., vol. 481, pp. 220–229, 2013, doi: 10.1016/j.jhydrol.2012.12.042.
[55] M. Mahmoudpour, M. Khamehchiyan, M. R. Nikudel, and M. R. Ghassemi, “Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran,” Eng. Geol., vol. 201, no. 2016, pp. 6–28, 2016, doi: 10.1016/j.enggeo.2015.12.004.
[56] L. Mi, H. Xiao, J. Zhang, Z. Yin, and Y. Shen, “Evolution of the groundwater system under the impacts of human activities in Evolution of the groundwater system under the impacts of human activities in middle reaches of Heihe River Basin ( Northwest China ) from 1985 to 2013,” Hydrogeol. J., vol. 24, pp. 971–986, 2016, doi: 10.1007/s10040-015-1346-y.
[57] P. S. Huang and Y. C. Chiu, “A simulation-optimization model for seawater intrusion management at Pingtung coastal area, Taiwan,” Water (Switzerland), vol. 10, no. 3, pp. 1–28, 2018, doi: 10.3390/w10030251.
[58] Y. Lin, Y. Chen, L. Chang, M. Yeh, G. Huang, and J. R. Petway, “Groundwater simulations and uncertainty analysis using MODFLOW and geostatistical approach with conditioning multi-aquifer spatial covariance,” Water (Switzerland), vol. 9, p. 164, 2017, doi: 10.3390/w9030164.
[59] S. C. P. De Carvalho, K. J. Carden, and N. P. Armitage, “Application of a sustainability index for integrated urban water management in Southern African cities: Case study comparison - Maputo and Hermanus,” Water SA, vol. 35, no. 2, pp. 144–151, 2009, doi: 10.4314/wsa.v35i2.76727.
[60] M. Saisana and S. Tarantola, “State-of-the-art Report on Current Methodologies and Practices for Composite Indicator Development,” Jt. Res. Centre. Italy Eur. Comm., no. July, pp. 1–72, 2002.
[61] R. K. Singh, H. R. Murty, S. K. Gupta, and A. K. Dikshit, “An overview of sustainability assessment methodologies,” Ecol. Indic., vol. 15, no. 1, pp. 281–299, 2012, doi: 10.1016/j.ecolind.2011.01.007.
[62] A. J. Witkowski, A. Kowalczyk, and J. Vrba, Groundwater Vulnerability Assessment and Mapping: IAH-Selected Papers. 2007.
[63] M. Lavapuro, A. Lipponen, A. Artimo, and T. S. Katko, “Groundwater sustainability indicators : testing with Finnish data,” Boreal Environ. Res., vol. 13, no. October, pp. 381–402, 2008.
[64] R. Hirata, A. Suhogusoff, and A. Fernandes, “Groundwater resources in the State of São Paulo ( Brazil ):,” An. Acad. Bras. Cienc., vol. 79, no. 1, pp. 141–152, 2007, doi: 10.1590/S0001-37652007000100016.
[65] M. Perez, O. Tujchneider, and D. Elı, “Sustainability indicators of groundwater resources in the central area of Santa Fe province , Argentina,” Environ. Earth Sci., vol. 73, pp. 2671–2682, 2015, doi: 10.1007/s12665-014-3181-1.
[66] S. M. Hosseini, E. Parizi, B. Ataie-Ashtiani, and C. T. Simmons, “Assessment of sustainable groundwater resources management using integrated environmental index: Case studies across Iran,” Sci. Total Environ., vol. 676, pp. 792–810, 2019, doi: 10.1016/j.scitotenv.2019.04.257.
[67] K. C. Hsu, C. H. Wang, K. C. Chen, C. T. Chen, and K. W. Ma, “Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan,” Hydrogeol. J., vol. 15, no. 5, pp. 903–913, 2007, doi: 10.1007/s10040-006-0137-x.
[68] J. Li, “Estimation of Groundwater Recharge Amount by Using Chloride Ion Balance Method-A Case Study of Pingtung Plain,” in Proceedings of the Second Conference on Groundwater Resources and Water Quality Protection, 1997, p. pp.703-714.
[69] J. C. Hu, H. T. Chu, C. S. Hou, T. H. Lai, R. F. Chen, and P. F. Nien, “The contribution to tectonic subsidence by groundwater abstraction in the Pingtung area, southwestern Taiwan as determined by GPS measurements,” Quat. Int., vol. 147, no. 1, pp. 62–69, 2006, doi: 10.1016/j.quaint.2005.09.007.
[70] F. J. Chang, C. W. Huang, S. T. Cheng, and L. C. Chang, “Conservation of groundwater from over-exploitation—Scientific analyses for groundwater resources management,” Sci. Total Environ., vol. 598, no. 1, pp. 828–838, 2017, doi: 10.1016/j.scitotenv.2017.04.142.
[71] Taiwan WRA, “Application Network of Hydrological Data,” 2012. [Online]. Available: http://gweb.wra.gov.tw/HydroApplication/index.aspx.
[72] C.-Y. Chiang, “Hydrogeological Survey of Pingtung Plain with the Project of Groundwater Observation Network in Taiwan,” Taipei, Taiwan, 2002.
[73] Taiwan DGBSAS, “The Inquiry System of Agriculture, Forestry, Fishery and Pasturage Data in Taiwan Townships in 2005,” 2005. [Online]. Available: http://win.dgbas.gov.tw/agr/ics_main.asp.
[74] A. Rahman, “A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India,” Appl. Geogr., vol. 28, no. 1, pp. 32–53, 2008, doi: 10.1016/j.apgeog.2007.07.008.
[75] S. Kaliraj, N. Chandrasekar, T. S. Peter, S. Selvakumar, and N. S. Magesh, “Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model,” Environ. Monit. Assess., vol. 187, no. 1, p. 4073, Nov. 2014, doi: 10.1007/s10661-014-4073-2.
[76] R. C. M. Nobre, O. C. Rotunno Filho, W. J. Mansur, M. M. M. Nobre, and C. A. N. Cosenza, “Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool,” J. Contam. Hydrol., vol. 94, no. 3–4, pp. 277–292, 2007, doi: 10.1016/j.jconhyd.2007.07.008.
[77] W. S. Jang, B. Engel, J. Harbor, and L. Theller, “Aquifer vulnerability assessment for sustainable groundwater management using DRASTIC,” Water (Switzerland), vol. 9, no. 10, p. 792, 2017, doi: 10.3390/w9100792.
[78] J. Wang, J. He, and H. Chen, “Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China,” Sci. Total Environ., vol. 432, pp. 216–226, 2012, doi: 10.1016/j.scitotenv.2012.06.005.
[79] S. Saida, H. Tarik, A. Abdellah, H. Farid, and B. Hakim, “Assessment of groundwater vulnerability to nitrate based on the optimised DRASTIC models in the GIS environment (Case of Sidi Rached Basin, Algeria),” Geosciences, vol. 7, no. 2, p. 20, 2017, doi: 10.3390/geosciences7020020.
[80] S. Javadi, N. Kavehkar, K. Mohammadi, A. Khodadadi, and R. Kahawita, “Calibrating DRASTIC using field measurements, sensitivity analysis and statistical methods to assess groundwater vulnerability,” Water Int., vol. 36, no. 6, pp. 719–732, 2011, doi: 10.1080/02508060.2011.610921.
[81] M. G. Rupert, “Calibration of the DRASTIC Ground Water Mapping Method,” Ground Water, pp. 625–630, 2001, doi: 10.1111/j.1745-6584.2001.tb02350.x.
[82] D. Thirumalaivasan, M. Karmegam, and K. Venugopal, “AHP-DRASTIC: Software for specific aquifer vulnerability assessment using DRASTIC model and GIS,” Environ. Model. Softw., vol. 18, no. 7, pp. 645–656, 2003, doi: 10.1016/S1364-8152(03)00051-3.
[83] S. Secunda, M. L. Collin, and A. J. Melloul, “Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region,” J. Environ. Manage., vol. 54, no. 1, pp. 39–57, 1998, doi: 10.1006/jema.1998.0221.
[84] G. P. Panagopoulos, A. K. Antonakos, and N. J. Lambrakis, “Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS,” Hydrogeol. J., vol. 14, no. 6, pp. 894–911, 2006, doi: 10.1007/s10040-005-0008-x.
[85] M. Sadat-Noori and K. Ebrahimi, “Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model,” Environ. Monit. Assess., vol. 188, no. 1, pp. 1–18, 2016, doi: 10.1007/s10661-015-4915-6.
[86] M. W. Toews and D. M. Allen, “Evaluating different GCMs for predicting spatial recharge in an irrigated arid region,” J. Hydrol., vol. 374, no. 3–4, pp. 265–281, 2009, doi: 10.1016/j.jhydrol.2009.06.022.
[87] L. Ribeiro, “Um novo índice de vulnerabilidade específico de aquíferos. Formulação e aplicações.[SI: a new index of aquifer susceptibility to agricultural pollution],” 2000.
[88] N. Kazakis and K. S. Voudouris, “Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters,” J. Hydrol., vol. 525, pp. 13–25, 2015, doi: 10.1016/j.jhydrol.2015.03.035.
[89] S. Goudarzi, S. A. Jozi, S. M. Monavari, A. Karbasi, and A. H. Hasani, “Assessment of groundwater vulnerability to nitrate pollution caused by agricultural practices,” Water Qual. Res., pp. 1–15, 2017, doi: 10.2166/wqrjc.2017.031.
[90] T. L. Saaty, The Analytical Hierarchy Process. McGraw-Hill, New York, 1980.
[91] W. Ho, “Integrated analytic hierarchy process and its applications - A literature review,” Eur. J. Oper. Res., vol. 186, no. 1, pp. 211–228, 2008, doi: 10.1016/j.ejor.2007.01.004.
[92] W. A. Lodwick, W. Monson, and L. Svoboda, “Attribute error and sensitivity analysis of map operations in geographical informations systems: Suitability analysis,” Int. J. Geogr. Inf. Syst., vol. 4, no. 4, pp. 413–428, 1990, doi: 10.1080/02693799008941556.
[93] P. Napolitano and A. G. Fabbri, “Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS,” IAHS Publ., no. 235, pp. 559–566, 1996.
[94] Napolitano P, Fabbri A.G., “Single parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: Proceedings of the 2nd HydroGIS conference,” IAHS Publ., vol. 235, no. 235, pp. 559–566, 1996.
[95] R. Bisson and J. H. Lehr, Modern Groundwater Exploration. John Wiley & Sons, 2004.
[96] Y. Hong and R. F. Adler, “Estimation of global SCS curve numbers using satellite remote sensing and geospatial data,” vol. 29, no. 2, pp. 471–477, 2008, doi: 10.1080/01431160701264292.
[97] M. Anane, B. Abidi, F. Lachaal, A. Limam, and S. Jellali, “GIS-based DRASTIC, Pesticide DRASTIC and the Susceptibility Index (SI): comparative study for evaluation of pollution potential in the Nabeul-Hammamet shallow aquifer, TunisiaDRASTIC-SIG, DRASTIC Pesticide et Indice de Sensibilité (SI) : étude comparative,” Hydrogeol. J., vol. 21, no. 3, pp. 715–731, 2013, doi: 10.1007/s10040-013-0952-9.
[98] Taiwan Central Geological Survey (CGS), “Hydrogeological Survey Report of Pingtung Plain, Taiwan,” 2002.
[99] I. Chenini, A. Zghibi, and L. Kouzana, “Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: State of the art and a case study,” J. African Earth Sci., vol. 109, pp. 11–26, 2015, doi: 10.1016/j.jafrearsci.2015.05.008.
[100] R. Krishna et al., “Groundwater vulnerability to pollution mapping of Ranchi district using GIS,” Appl. Water Sci., vol. 5, no. 4, pp. 345–358, 2014, doi: 10.1007/s13201-014-0198-2.
[101] H. Assaf and M. Saadeh, “Geostatistical assessment of groundwater nitrate contamination with reflection on DRASTIC vulnerability assessment: The case of the upper Litani basin, Lebanon,” Water Resour. Manag., vol. 23, no. 4, pp. 775–796, 2009, doi: 10.1007/s11269-008-9299-8.
[102] H. Huan, J. Wang, and Y. Teng, “Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China,” Sci. Total Environ., vol. 440, pp. 14–23, 2012, doi: 10.1016/j.scitotenv.2012.08.037.
[103] I. Babiker, M. A.A. Mohamed, T. Hiyama, and K. Kato, “A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan,” Sci. Total Environ., vol. 345, pp. 127–140, 2005, doi: 10.1016/j.scitotenv.2004.11.005.
[104] I. Ahmed, Y. Nazzal, F. K. Zaidi, N. S. N. Al-Arifi, H. Ghrefat, and M. Naeem, “Hydrogeological vulnerability and pollution risk mapping of the Saq and overlying aquifers using the DRASTIC model and GIS techniques, NW Saudi Arabia,” Environ. Earth Sci., vol. 74, no. 2, 2015, doi: 10.1007/s12665-015-4120-5.
[105] G. Busico et al., “A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses,” Water Res., vol. 171, p. 115386, 2020, doi: 10.1016/j.watres.2019.115386.
[106] E. Sener, S. Sener, and A. Davraz, “Assessment of aquifer vulnerability based on GIS and DRASTIC methods: A case study of the Senirkent-Uluborlu Basin (Isparta, Turkey),” Hydrogeol. J., vol. 17, no. 8, pp. 2023–2035, 2009, doi: 10.1007/s10040-009-0497-0.
[107] B. Dixon, “Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability : a GIS-based sensitivity analysis,” J. Hydrol., vol. 309, pp. 17–38, 2005, doi: 10.1016/j.jhydrol.2004.11.010.
[108] M. A. Baghapour et al., “Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran,” J. Environ. Heal. Sci. Eng., vol. 14, no. 1, 2016, doi: 10.1186/s40201-016-0254-y.
[109] Y. Zhou, “A critical review of groundwater budget myth, safe yield and sustainability,” J. Hydrol., vol. 370, no. 1–4, pp. 207–213, 2009, doi: 10.1016/j.jhydrol.2009.03.009.
[110] W.-C. Li, C.-F. Ni, C.-H. Tsai, and Y.-M. Wei, “Effects of hydrogeological properties on sea-derived benzene transport in unconfined coastal aquifers,” Environ. Monit. Assess., vol. 188, no. 5, p. 307, 2016, doi: 10.1007/s10661-016-5307-2.
[111] Y.-S. Su, C.-F. Ni, W.-C. Li, I.-H. Lee, and C.-P. Lin, “Applying deep learning algorithms to enhance simulations of large-scale groundwater flow in IoTs,” Appl. Soft Comput., vol. 92, p. 106298, 2020, doi: https://doi.org/10.1016/j.asoc.2020.106298.
[112] T. Russo, K. Alfredo, and J. Fisher, “Sustainable Water Management in Urban, Agricultural, and Natural Systems,” Water (Switzerland), vol. 6, pp. 3934–3956, 2014, doi: 10.3390/w6123934.
[113] I. Juwana, N. Muttil, and B. J. C. Perera, “Indicator-based water sustainability assessment — A review,” Sci. Total Environ., vol. 438, pp. 357–371, 2012, doi: 10.1016/j.scitotenv.2012.08.093.
[114] Doherty J., PEST Model-Independent Parameter Estimation, vol. 2005. Watermark Computing, Corinda, Australia, 2010.
[115] J. Doherty and J. M. Johnston, “Methodologies for calibration and predictive analysis of a watershed model,” J. Am. Water Resour. Assoc., vol. 30605, pp. 251–265, 2003.
[116] M. C. Hill and Cl. R. Tiedeman, Effective groundwater model calibration. John Wiley & Sons Inc., USA, 2007.
[117] M. Sophocleous, “From safe yield to sustainable development of water resources - The Kansas experience,” J. Hydrol., vol. 235, no. 1–2, pp. 27–43, 2000, doi: 10.1016/S0022-1694(00)00263-8.
[118] T.-D. D. Vu, C.-F. F. Ni, W.-C. C. Li, M.-H. H. Truong, and M.-H. Vu, T.-D.; Ni, C.-F.; Li, W.-C.; Truong, “Modified index-overlay method to assess spatial – temporal variations of groundwater vulnerability and groundwater contamination risk in areas with variable activities of agriculture developments,” Water (Switzerland), vol. 11, no. 12, p. 2492, 2019, doi: https://doi.org/10.3390/w11122492.
[119] S. G. Cameron and P. A. White, “Determination of key indicators to assess groundwater quantity in New Zealand aquifers,” Wellington, New Zealand, 2004.
[120] J. M. Sharp, “The impacts of urbanization on groundwater systems and recharge,” AQUAmundi, vol. 01, no. april, pp. 1–6, 2010, doi: 10.4409/Am-004-10-0008.
[121] C. S. Ting, “Application of a groundwater model in the dispute among water users in the Pingtung Coastal Plain, Taiwan,” in In Proceedings of international workshop on groundwater and environment, 1992, pp. 332–345.
[122] J. Doherty, “Ground water model calibration using pilot points and regularization,” Groundwater, vol. Vol. 41, N, pp. 170–177, 2005, doi: https://doi.org/10.1111/j.1745-6584.2003.tb02580.x.
[123] IPCC Climate Change, The scientific basis: contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press, 2001.
[124] N. S. Council, “Climate Change in Taiwan : Scientific Report 2011,” 2011.
[125] C. Vörösmarty et al., “Humans transforming the global water system,” Eos Trans. Am. Geophys. Union, vol. 85, no. 48, pp. 509–520, 2004, doi: 10.1029/2004EO480001.
[126] C. Koreimann, J. Grath, G. Winkler, W. Nagy, and W. R. Vogel, “Groundwater monitoring in Europe,” Copenhagen K, Denmark, 1996. [Online]. Available: http://water.eionet.europa.eu.
[127] G. Jousma and F. J. Roelofsen, “World-wide inventory on groundwater monitoring,” no. October, 2004.
[128] L. A. Zadeh, “Toward a generalized theory of uncertainty (GTU)- An outline,” Inf. Sci. (Ny)., vol. 172, no. 1–2, pp. 1–40, 2005, doi: 10.1016/j.ins.2005.01.017.
[129] E. Moges, Y. Demissie, L. Larsen, and F. Yassin, “Review: Sources of hydrological model uncertainties and advances in their analysis,” Water (Switzerland), vol. 13, no. 1, pp. 1–23, 2021, doi: 10.3390/w13010028.
[130] A. E. Hassan, H. M. Bekhit, and J. B. Chapman, “Uncertainty assessment of a stochastic groundwater flow model using GLUE analysis,” J. Hydrol., vol. 362, no. 1–2, pp. 89–109, 2008, doi: 10.1016/j.jhydrol.2008.08.017.
[131] K. Loague and R. E. Green, “Statistical and graphical methods for evaluating solute transport models: Overview and application,” J. Contam. Hydrol., vol. 7, no. 1–2, pp. 51–73, 1991, doi: 10.1016/0169-7722(91)90038-3.
[132] K. Loague, J. S. Blanke, M. B. Mills, R. Diaz-Diaz, and D. L. Corwin, “Data Related Uncertainty in Near-Surface Vulnerability Assessments for Agrochemicals in the San Joaquin Valley,” J. Environ. Qual., vol. 41, no. 5, pp. 1427–1436, 2012, doi: 10.2134/jeq2011.0443.
[133] J. J. Gurdak, J. E. McCray, G. Thyne, and S. L. Qi, “Latin hypercube approach to estimate uncertainty in ground water vulnerability,” Ground Water, vol. 45, no. 3, pp. 348–361, 2007, doi: 10.1111/j.1745-6584.2006.00298.x.
[134] A. Coppola et al., “A Stochastic Texture-based Approach for Evaluating Solute Travel Times to Groundwater at Regional Scale by Coupling GIS and Transfer Function,” Procedia Environ. Sci., vol. 19, pp. 711–722, 2013, doi: 10.1016/j.proenv.2013.06.080.
[135] P. A. Burrough, “Principles of geographical information systems for land resources assessment,” Geocarto Int., vol. 1, no. 3, p. 54, 1986, doi: 10.1080/10106048609354060.
[136] M. F. Goodchild and O. Dubuc, “A model of error for choropleth maps, with applications to geographic information systems,” in Proceedings, AutoCarto 8, 1987, pp. 165–174.
[137] N. A. Eisenberg, L. D. Richerstein, and C. Voss, “Performance assessment, site characterization, and sensitivity and uncertainty methods: Their necessary association for licensing,” in Proceedings of the Conference on Geostatistical, Sensitivity, and Uncertainty Methods for Ground-Water Flow and Radionuclide Transport Modeling, 1989, pp. 9–38.
[138] A. Brandtetter and B. E. Buxton, “The role of geostatistical, sensitivity and uncertainty analysis in performance assessment,” in Geostatistical, Sensitivity, and Uncertainty Methods for Groundwater Flow and Radionuclide Transport Modeling, 1989, pp. 89–220.
[139] W. A. Jury and J. Gruber, “A stochastic analysis of the influence of soil and climatic variability on the estimate of pesticide groundwater pollution potential,” vol. 25, no. 12, pp. 2465–2474, 1989, doi: 10.1029/WR025i012p02465.
[140] M. J. Small and J. R. Mular, “Long‐term pollutant degradation in the unsaturated zone with stochastic rainfall infiltration,” Water Resour. Res., vol. 23, no. 12, pp. 2246–2256, 1987, doi: 10.1029/WR023i012p02246.
[141] C. F. Ni, S. G. Li, C. J. Liu, and S. M. Hsu, “Efficient conceptual framework to quantify flow uncertainty in large-scale, highly nonstationary groundwater systems,” J. Hydrol., vol. 381, no. 3–4, pp. 297–307, 2010, doi: 10.1016/j.jhydrol.2009.12.002.
[142] C. S. Jang and C. W. Liu, “Geostatistical analysis and conditional simulation for estimating the spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan,” Hydrol. Process., vol. 18, no. 7, pp. 1333–1350, 2004, doi: 10.1002/hyp.1397.
[143] M. Bianchi, T. Kearsey, and A. Kingdon, “Integrating deterministic lithostratigraphic models in stochastic realizations of subsurface heterogeneity. Impact on predictions of lithology, hydraulic heads and groundwater fluxes,” J. Hydrol., p., 2015, doi: 10.1016/j.jhydrol.2015.10.072.
[144] P. K. Kitanidis, “Groundwater flow in heterogeneous formations,” in Subsurface Flow and Transport: A Stochastic Approach, G. Dagan and S. P. E. Neuman, Eds. Cambridge University Press, 1997, pp. 83–91.
[145] D. Zhang, Stochastic Methods for Flow in Porous Media: Coping With Uncertainties. 2002.
[146] O. Baskan, H. Cebel, S. Akgul, and G. Erpul, “Conditional simulation of USLE/RUSLE soil erodibility factor by geostatistics in a Mediterranean catchment, Turkey,” Environ. Earth Sci., vol. 60, no. 6, pp. 1179–1187, 2010, doi: 10.1007/s12665-009-0259-2.
[147] C. V Deutsch and A. G. Journel, “GSLIB : Geostatistical Software Library and User ’ s Guide Second Edition Preface to the Second Edition,” p. 366, 1998.
[148] J. J. Gómez-Hernández and A. G. Journel, “Joint Sequential Simulation of MultiGaussian Fields,” Geostatist., no. 1, A. Soares, Ed. Springer, Dordrecht, 1993, pp. 85–94.
[149] E. H. Isaaks and M. R. Srivastava, “Applied geostatistics,” Choice Rev. Online, vol. 28, no. 01, pp. 28-0304-28–0304, 1990, doi: 10.5860/choice.28-0304.
[150] J. R. Eggleston, S. A. Rojstaczer, and J. J. Peirce, “Identification of hydraulic conductivity structure in sand and gravel aquifers: Cape Cod data set,” Water Resour. Res., vol. 32, no. 5, pp. 1209–1222, 1996, doi: 10.1029/96WR00272.
[151] T.-D. Vu, C.-F. Ni, W.-C. Li, M.-H. Truong, and S. M. Hsu, “Predictions of groundwater vulnerability and sustainability by an integrated index-overlay method and physical-based numerical model,” J. Hydrol., vol. 596, p. 126082, 2021, doi: 10.1016/j.jhydrol.2021.126082.
[152] P. White, C. L. Ruble, and M. E. Lane, “The effect of changes in land use on nitrate concentration in water supply wells in southern Chester County, Pennsylvania,” Environ. Monit. Assess., vol. 185, no. 1, pp. 643–651, 2013, doi: 10.1007/s10661-012-2581-5.
[153] M. Arauzo, “Vulnerability of groundwater resources to nitrate pollution: A simple and effective procedure for delimiting Nitrate Vulnerable Zones,” Sci. Total Environ., vol. 575, pp. 799–812, 2017, doi: 10.1016/j.scitotenv.2016.09.139.
[154] A. Elçi, “Calibration of groundwater vulnerability mapping using the generalized reduced gradient method,” J. Contam. Hydrol., vol. 207, pp. 39–49, 2017, doi: 10.1016/j.jconhyd.2017.10.008.
[155] Agriculture Engineering Research Center, “Survey, analysis and assessment of groundwater quality in Taiwan areas in 2009,” 2009.
[156] T. Y. Stigter, L. Ribeiro, and A. M. M. Carvalho Dill, “Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal,” Hydrogeol. J., vol. 14, no. 1–2, pp. 79–99, 2006, doi: 10.1007/s10040-004-0396-3.
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2021-3-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明