博碩士論文 108624604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.190.159.10
姓名 范阮紅玉(PHAN NGUYEN HONG NGOC)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用量子運算技術進行二維地下水流數值模擬
(NUMERICAL SIMULATION OF 2D GROUNDWATER FLOW BY USING QUANTUM COMPUTING TECHNOLOGY)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地下水在供水系統中起著至關重要的作用。為了了解地下水的行為,需要使用地下水模型。以往的研究長期以來傾向於使用傳統的計算方法來構建地下水模型, 但最近幾項研究已經證明了量子計算在各種應用(例如反演或隨機問題)中的效率,探索量子技術在地下水水文學領域的應用應該是很有趣的。本研究旨在開發和測試利用量子計算穩態和暫態地下水方程式的解,而這些地下水方程式透過有限差分法直接推導出地下水水頭的變量。 Python 腳本用於在傳統電腦上計算地下水方程式矩陣,其他腳本則連續構建最小二乘問題的 QUBO(量子無限制二進制最佳化)方程,以求解來自 D-Wave System 的 QPU(量子處理單元)直接求解器和迭代直接求解器中的離散矩陣。傳統計算和量子計算的計算結果用於比較穩態時 2x2、3x3、4x4、9x9 和瞬態時 2x2 的網格大小。研究結果顯示量子退火器計算的穩態模型與傳統計算結果一致,QPU直接求解器中的網格大小為 2x2,迭代求解器中的網格大小為 2x2、3x3、4x4。對於兩種求解器而言,不穩定性在 9x9 並具有100個變量的網格中清楚地顯示出來。網格大小為 2x2 的暫態模型也獲得了與穩態相同的結果。大體而言,量子電腦中的測試結果顯示迭代求解器的表現優於 QPU直接求解器。本研究結論為由於電腦硬體中量子位的限制,量子計算能在小尺度的問題中取得較好的結果,計算過程中迭代求解器的結果亦比 QPU直接求解器更加穩定。本研究顯示D-Wave 系統的特定封包和 API 認證應該要透過 SAPI(D-Wave 的 Solver API)直接在本地環境或 D-Wave 的 Leap 線上平台上去執行程式,並證明了地下水模型可以利用目前的量子計算進行求解,儘管在大尺度問題中仍存在錯誤,但仍可視為是透過量子計算解決地下問題的初步研究之一。
關鍵詞:Groundwater 模型,有限差分法,量子退火法,QUBO,QPU 直接求解器,迭代求解器,Python 腳本。
摘要(英) Groundwater plays a vital role in the water supply system. To understand the groundwater behavior, groundwater model was necessary to carry out. Previous studies prefer to use traditional computational methods to construct groundwater models for a long time. Recently, several studies have proven the efficiency of quantum computing in various applications including inverse problems, stochastic interpretation. It should be interesting to explore the possible implementation of quantum technology for the field of groundwater hydrology. This study aims to develop and test the solutions of groundwater equations for steady state and transient state in quantum computing. These groundwater equations were directly derived by finite difference method to find groundwater head variables. Python scriptings were built to calculate matrices of groundwater equations on classical computer. The other scriptings were continuously constructed QUBO (Quadratic Unconstrained Binary Optimization) equation of least square problem to solve discretized matrices in QPU (Quantum Processing Unit) direct solver and Iterative direct solver from D-Wave System. The results calculated by classical computing and quantum computing were presented for comparison purposes on grid sizes of 2x2, 3x3, 4x4, 9x9 in the steady-state, and 2x2 in the transient state. Our results indicated that the steady state model calculated by the simulated quantum annealer was consistent with classical computing results with grid sizes of 2x2 in QPU (Quantum Processing Unit) direct solver and grid sizes of 2x2, 3x3, 4x4 in Iterative solver. The instability was clearly shown in grid sizes of 9x9 with 100 variables in the matrices for both solvers. Transient state model with grid size of 2x2 also gained the same status as steady-state case. Generally, Iterative solver has performed better than QPU (Quantum Processing Unit) direct solver in testing examples on quantum computer. Based on our analysis, we conclude that quantum computing certainly achieves quality solutions in small-scale problems due to the limitations of qubits in the hardware machine. The results returned from Iterative solver were more stable than QPU (Quantum Processing Unit) direct solver in the calculation process. The research indicated that specific packages and API token authentication from D-Wave System should be prepared to directly run the problems in the local environment or D-Wave′s Leap online platform through SAPI (D-Wave′s Solver API) . Our research has proven that groundwater model is possible to solve by quantum computing in this period. Despite errors in large-scale problems, this research is considered as one of the initial studies in solving subsurface problems by quantum computing in its early stage.
Keywords: Groudwater model, finite difference method, quantum annealing method, QUBO, QPU direct solver , Iterative solver , Python scriptings.
關鍵字(中) ★ Groundwater 模型
★ 有限差分法
★ 量子退火法
★ QUBO
★ QPU 直接求解器
★ 迭代求解器
關鍵字(英) ★ Groudwater model
★ finite difference method
★ quantum annealing method
★ QUBO
★ QPU direct solver
★ Iterative solver
論文目次 ABSTRACT i
摘要 iii
ACKNOWLEDGEMENTS v
LIST OF CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xi
LIST OF ABBREVIATIONS xii
LIST OF NOTATIONS xiii
CHAPTER I. INTRODUCTION 1
1.1 Motivation and objectives 1
2.2 Literature review 5
2.3 Thesis structure 7
CHAPTER II. MATHEMATIC FORMULAR OF NUMERICAL METHOD 9
2.1 Governing equation of Groundwater equations 9
2.1.1 Governing equation 9
2.1.2 Boundary conditions and assumptions in the model 13
2.2 Governing equation of Finite Difference Method 14
2.3 Matrix solver in the model 15
CHAPTER III. QUANTUM ANNEALING METHOD 17
3.1 Quantum computing 17
3.1.1 Introcduction to quantum annealing 17
3.1.2 Dwave system 17
3.1.3 Application problem 19
3.1.4 How quantum annealing work 19
3.1.5 Underlying quantum physic 21
3.1.6 Problem formulation: key concepts 22
3.1.7 Graph 24
3.1.8 D-Wave QPU architecture: Chimera 25
3.1.9 Minor-Embedding a problem onto the Chimera graph 26
3.2 Least-squares approximation 28
3.3 Least-squares approximation in quantum computing 29
CHAPTER IV. NUMERICAL EXAMPLES 35
4.1 Conceptual model 35
4.2 Results based on classical methods 36
4.2.1 Steady-state case 36
4.2.2 Transient case 38
4.3 Results based on quantum annealing method 43
4.3.1 Steady-state case 43
4.3.2 Transient case 50
4.3.3 Comparisons between QPU direct solver and Iterative solver 56
4.4 Limitation of quantum computing results 57
CHAPTER V. CONCLUSIONS 60
5.1 Conclusions 60
5.2 Suggestions 62
REFERENCES 63
參考文獻 1. Kresic, N. Hydrogeology and groundwater modeling; CRC press: USA, 2006.
2. Fitts, C.R. Groundwater science; Elsevier: USA, 2002.
3. Dickson, N.G.; Johnson, M.; Amin, M.; Harris, R.; Altomare, F.; Berkley, A.; Bunyk, P.; Cai, J.; Chapple, E.; Chavez, P. Thermally assisted quantum annealing of a 16-qubit problem. Nature communications 2013, 4, 1-6.
4. Johnson, M.W.; Amin, M.H.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A.J.; Johansson, J.; Bunyk, P. Quantum annealing with manufactured spins. Nature 2011, 473, 194-198.
5. Lanting, T.; Przybysz, A.J.; Smirnov, A.Y.; Spedalieri, F.M.; Amin, M.H.; Berkley, A.J.; Harris, R.; Altomare, F.; Boixo, S.; Bunyk, P. Entanglement in a quantum annealing processor. Physical Review X 2014, 4, 21-41.
6. Outeiral Rubiera, C.; Strahm, M.; Shi, J.; Morris, G.; Benjamin, S.C.; Deane, C.M. The prospects of quantum computing in computational molecular biology. Wiley Interdisciplinary Reviews: Computational Molecular Science 2020, 11, 1-23.
7. Fedorov, A.; Gelfand, M. Towards practical applications in quantum computational biology. Nature Computational Science 2021, 1, 114-119.
8. Ball, P. Physics of life: The dawn of quantum biology. Nature News 2011, 474, 272-274.
9. Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya, N.P. Quantum chemistry in the age of quantum computing. Chemical reviews 2019, 119, 10856-10915.
10. Bauer, B.; Bravyi, S.; Motta, M.; Kin-Lic Chan, G. Quantum algorithms for quantum chemistry and quantum materials science. Chemical Reviews 2020, 120, 12685-12717.
11. Lanyon, B.P.; Whitfield, J.D.; Gillett, G.G.; Goggin, M.E.; Almeida, M.P.; Kassal, I.; Biamonte, J.D.; Mohseni, M.; Powell, B.J.; Barbieri, M. Towards quantum chemistry on a quantum computer. Nature chemistry 2010, 2, 106-111.
12. Yuan, X. A quantum-computing advantage for chemistry. Science 2020, 369, 1054-1055.
13. Solenov, D.; Brieler, J.; Scherrer, J.F. The potential of quantum computing and machine learning to advance clinical research and change the practice of medicine. Missouri medicine 2018, 115, 463-467.
14. National Academies of Sciences, E.; Medicine. Quantum computing: progress and prospects; National Academies Press: Washington, DC, 2019.
15. Emani, P.S.; Warrell, J.; Anticevic, A.; Bekiranov, S.; Gandal, M.; McConnell, M.J.; Sapiro, G.; Aspuru-Guzik, A.; Baker, J.T.; Bastiani, M. Quantum computing at the frontiers of biological sciences. Nature Methods 2019, 1-9.
16. Orus, R.; Mugel, S.; Lizaso, E. Quantum computing for finance: Overview and prospects. Reviews in Physics 2019, 4, 1-13.
17. Egger, D.J.; Gambella, C.; Marecek, J.; McFaddin, S.; Mevissen, M.; Raymond, R.; Simonetto, A.; Woerner, S.; Yndurain, E. Quantum computing for Finance: state of the art and future prospects. IEEE Transactions on Quantum Engineering 2020, 1-18.
18. Rebentrost, P.; Gupt, B.; Bromley, T.R. Quantum computational finance: Monte Carlo pricing of financial derivatives. Physical Review A 2018, 98, 1-17.
19. Rebentrost, P.; Lloyd, S. Quantum computational finance: quantum algorithm for portfolio optimization. arXiv preprint arXiv:1811.03975 2018, 1-18.
20. Wang, H.F.; Anderson, M.P. Introduction to groundwater modeling: finite difference and finite element methods; Academic Press: 1995.
21. Ella, V.B.; Melvin, S.W.; Kanwar, R.S.; Jones, L.; Horton, R. Inverse three–dimensional groundwater modeling using the finite–difference method for recharge estimation in a glacial till aquitard. Transactions of the ASAE 2002, 45, 703-715.
22. Mehl, S.; Hill, M.C. Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Advances in Water Resources 2002, 25, 497-511.
23. Hunt, R.J.; Anderson, M.P.; Kelson, V.A. Improving a complex finite‐difference ground water flow model through the use of an analytic element screening model. Groundwater 1998, 36, 1011-1017.
24. Rojas, R.; Kahunde, S.; Peeters, L.; Batelaan, O.; Feyen, L.; Dassargues, A. Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modelling. Journal of Hydrology 2010, 394, 416-435.
25. Omar, P.J.; Gaur, S.; Dwivedi, S.; Dikshit, P. Groundwater modelling using an analytic element method and finite difference method: An insight into Lower Ganga river basin. Journal of Earth System Science 2019, 128, 1-10.
26. Chung, I.-M.; Kim, N.-W.; Lee, J.; Sophocleous, M. Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: application to Mihocheon watershed, South Korea. Hydrogeology Journal 2010, 18, 1253-1264.
27. Gogu, R.; Carabin, G.; Hallet, V.; Peters, V.; Dassargues, A. GIS-based hydrogeological databases and groundwater modelling. Hydrogeology Journal 2001, 9, 555-569.
28. Baalousha, H.M. Mapping groundwater contamination risk using GIS and groundwater modelling. A case study from the Gaza Strip, Palestine. Arabian Journal of Geosciences 2011, 4, 483-494.
29. Leblanc, M.; Favreau, G.; Tweed, S.; Leduc, C.; Razack, M.; Mofor, L. Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa. Hydrogeology Journal 2007, 15, 97-100.
30. Singh, A. Groundwater resources management through the applications of simulation modeling: a review. Science of the Total Environment 2014, 499, 414-423.
31. Doherty, J.; Simmons, C.T. Groundwater modelling in decision support: reflections on a unified conceptual framework. Hydrogeology Journal 2013, 21, 1531-1537.
32. Inc., D.-W.S. Getting Started with the D-Wave System; Canada, 2020.
33. Cao, Y.; Daskin, A.; Frankel, S.; Kais, S. Quantum circuit design for solving linear systems of equations. Molecular Physics 2012, 110, 1675-1680.
34. Suau, A.; Staffelbach, G.; Calandra, H. Practical Quantum Computing: solving the wave equation using a quantum approach. ACM Transactions on Quantum Computing 2021, 2, 1-35.
35. Headquarters, C. D-Wave Problem-Solving Handbook; Canada, 2020.
36. Neukart, F.; Compostella, G.; Seidel, C.; Von Dollen, D.; Yarkoni, S.; Parney, B. Traffic flow optimization using a quantum annealer. Frontiers in ICT 2017, 4, 1-6.
37. Stollenwerk, T.; Lobe, E.; Jung, M. Flight gate assignment with a quantum annealer. In Proceedings of the International Workshop on Quantum Technology and Optimization Problems, 2019; pp. 99-110.
38. Mehta, A.; Muradi, M.; Woldetsadick, S. Quantum Annealing Based Optimization of Robotic Movement in Manufacturing. In Proceedings of the International Workshop on Quantum Technology and Optimization Problems, 2019; pp. 136-144.
39. Das, K.; Zaman, S.; Sadhu, A.; Banerjee, A.; Khan, S. Quantum annealing for solving a nurse-physician scheduling problem in Covid-19 clinics. arXiv preprint arXiv: 1904.12139 2019, 1-21.
40. Rogers, M.L.; Singleton Jr, R.L. Floating-point calculations on a quantum annealer: Division and matrix inversion. arXiv preprint arXiv:1901.06526 2019, 1-36.
41. O′Malley, D.; Vesselinov, V.V. ToQ. jl: A high-level programming language for D-Wave machines based on Julia. In Proceedings of the 2016 IEEE High Performance Extreme Computing Conference (HPEC), 2016; pp. 1-7.
42. Borle, A.; Lomonaco, S.J. Analyzing the quantum annealing approach for solving linear least squares problems. In Proceedings of the International Workshop on Algorithms and Computation, 2019; pp. 289-301.
43. Potok, T.E.; Schuman, C.; Young, S.; Patton, R.; Spedalieri, F.; Liu, J.; Yao, K.-T.; Rose, G.; Chakma, G. A study of complex deep learning networks on high-performance, neuromorphic, and quantum computers. ACM Journal on Emerging Technologies in Computing Systems (JETC) 2018, 14, 1-21.
44. Gibney, E. D-wave upgrade: How scientists are using the world’s most controversial quantum computer. Nature News 2017, 541, 447-448.
45. Ambrosiano, J.J.; Roberts, R.M.; Sims, B.H. Using the D-Wave 2X quantum computer to explore the formation of global terrorist networks; Los Alamos National Lab.(LANL), Los Alamos, NM (United States): 2017.
46. Genin, S.N.; Ryabinkin, I.G.; Izmaylov, A.F. Quantum chemistry on quantum annealers. arXiv preprint arXiv:1901.04715 2019, 1-10.
47. Phillipson, F.; Bhatia, H.S. Portfolio Optimisation Using the D-Wave Quantum Annealer. arXiv preprint arXiv:2012.01121 2020, 1-14.
48. Mugel, S.; Kuchkovsky, C.; Sanchez, E.; Fernandez-Lorenzo, S.; Luis-Hita, J.; Lizaso, E.; Orus, R. Dynamic Portfolio Optimization with Real Datasets Using Quantum Processors and Quantum-Inspired Tensor Networks. arXiv preprint arXiv:2007.00017 2020, 1-11.
49. Zubov, D.; Volponi, F.; Khosravy, M. D-wave quantum computing Ising model: A case study for the forecasting of heat waves. In Proceedings of the 2015 International Conference on Control, Automation and Information Sciences (ICCAIS), 2015; pp. 149-152.
50. MacQuarrie, E.R.; Simon, C.; Simmons, S.; Maine, E. The emerging commercial landscape of quantum computing. Nature Reviews Physics 2020, 2, 596-598.
51. Teplukhin, A.; Kendrick, B.K.; Tretiak, S.; Dub, P.A. Electronic structure with direct diagonalization on a D-wave quantum annealer. Scientific reports 2020, 10, 1-11.
52. Hu, F.; Lamata, L.; Sanz, M.; Chen, X.; Chen, X.; Wang, C.; Solano, E. Quantum computing cryptography: Finding cryptographic Boolean functions with quantum annealing by a 2000 qubit D-wave quantum computer. Physics Letters A 2020, 384, 1-8.
53. Chapuis, G.; Djidjev, H.; Hahn, G.; Rizk, G. Finding maximum cliques on the d-wave quantum annealer. Journal of Signal Processing Systems 2019, 91, 363-377.
54. Hu, F.; Wang, B.N.; Wang, N.; Wang, C. Quantum machine learning with D‐wave quantum computer. Quantum Engineering 2019, 1, 1-12.
55. Chancellor, N.; Cumming, R.; Thomas, T. Toward a standardized methodology for constructing quantum computing use cases. arXiv preprint arXiv:2006.05846 2020, 1-10.
56. Hayley, K. The present state and future application of cloud computing for numerical groundwater modeling. Groundwater 2017, 55, 678-682.
57. O’Malley, D. An approach to quantum-computational hydrologic inverse analysis. Scientific reports 2018, 8, 1-9.
58. Nikolov, P. Markov Process Simulation with Quantum Computer. arXiv preprint arXiv:1806.06013 2018, 1-4.
59. Anderson, J.D.; Wendt, J. Computational fluid dynamics; Springer: Singapore, 1995.
60. Ibaraki, M.; Panday, S.; Niswonger, R.G.; Langevin, C.D. Improvement of performance and applicability of MODFLOW-2005: new NWT solver and χMD matrix solver package. IAHS-AISH publication 2012, 355, 100-105.
61. Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W. Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport. Groundwater 2002, 40, 267-272.
62. Tumeo, A.; Gawande, N.; Villa, O. A flexible CUDA LU-based solver for small, batched linear systems. In Numerical Computations with GPUs; Springer: 2014; pp. 87-101.
63. Li, S.; Gu, M.; Cheng, L. Fast structured LU factorization for nonsymmetric matrices. Numerische Mathematik 2014, 127, 35-55.
64. James, W.P.; Laza, K.; Bell, F.; Moridis, G.; Kim, K. Two-Dimensional Groundwater Modeling with Microcomputers. Journal of Water Resources Planning and Management 1987, 113, 293-307.
65. Jia, J.; Sogabe, T.; Li, S. A generalized symbolic Thomas algorithm for the solution of opposite-bordered tridiagonal linear systems. Journal of Computational and Applied Mathematics 2015, 290, 423-432.
66. Du1a, Q.; Li1b, Z.; Zhang, H.; Lu, X.; Zhang, L. An improved Thomas Algorithm for finite element matrix parallel computing.
67. Renner, L.; Langworth IV, D.; Gerlach, L. Advanced engineering mathematics; Laurie Rosatone: USA, 1998.
68. Bennett, C.H.; Bernstein, E.; Brassard, G.; Vazirani, U. Strengths and weaknesses of quantum computing. SIAM journal on Computing 1997, 26, 1510-1523.
69. Inc., D.-W.S. D-Wave Hybrid; Canada, 2021.
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2021-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明