博碩士論文 108323100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.149.247.69
姓名 吳柏頡(Po-Chieh Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 牙科矯正釘於不同植入參數之生物力學影響
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,矯正釘植入為齒顎矯正最常搭配的治療方式之一。矯正釘植入的失敗率約為20%。手術失敗的原因很多,最主要是穩定度。除了患者本身的問題外,矯正釘的設計、材質、植入角度及受力方向都與穩定度有關。本研究將針對影響矯正釘植體穩定度的一些重要因素作探討。在臨床上,矯正釘的植入角度及受力方式非常多元,本研究模擬分析時分成三種植入角度(90°、60°、30°),搭配8種不同的受力方向。骨頭的材料性質分別設定為等向性或正交性,以進行比較。矯正釘植入後便會立即開始使用,矯正釘與骨頭之結合可分成兩個階段。第一階段為剛植入時是屬於未骨整合狀態,隨後由於骨頭隨時間逐漸生長到植體上,會進入第二階段骨整合狀態。在判別植體穩定度的指標方面則採用矯正釘及骨頭的位移、等效應力及等效應變。此外,本研究進行矯正釘植體的側向彎曲模擬分析及實驗,瞭解植體的勁度,並提出人造骨白化現象的分析模型修正方式。
研究結果顯示,矯正釘的位移在植入角度為90°時最大,在30°時最小。矯正釘受力方向要避免與植入角度垂直,否則容易造成矯正釘位移及骨頭最大主應力過大,導致穩定度下降。骨頭採用正交性材料性質的結果在趨勢上是比較接近實際狀況,採用等向性材料性質的結果會被低估。在骨整合狀態下,骨頭的最大主應力比較大,但並沒有超過抗拉強度,不會造成骨頭破壞。在未骨整合狀態下,矯正釘的位移比較大,骨頭的等效應變超過了3000 με,會降低骨整合的程度,說明此狀態穩定度較差。矯正釘與骨頭受力反應之對稱性,此現象可用以簡化後續的模擬分析,只需要分析受力方向0°~180°,即可推測受力方向180°~360°的結果。若不考慮人造骨在植入矯正釘時產生的白化現象,則矯正釘植體勁度的模擬值明顯大於實驗值。本研究提出修正模型,調整模型的白化層區域大小及降低此區的楊氏模數,可使模擬分析的勁度值與實驗值相近。
摘要(英) In recent years, orthodontic miniscrew implantation is one of the most commonly used methods of orthodontic treatment. The failure rate of miniscrew implantation is about 20%. There are many reasons for failure, the most important being stability. In addition to the patient′s own problems, the design, material, implant angle and loading direction of the miniscrew are related to the stability. In this study, some important factors affecting the stability of miniscrew implants were discussed. Clinically, the implantation angle and loading mode of the miniscrew are very diverse. The simulation analysis in this study was divided into three implant angles (90°, 60° and 30°), with eight different loading directions. The material properties of the bones were set as isotropic or orthogonality, respectively, for comparison. Immediately after the insertion of the miniscrew, the fixation of the miniscrew to the bone can be divided into two stages. The first stage is the state of non-osseointegration at the time of implantation, and then the bone gradually grows into the implant over time and enters the second stage of osseointegration. The index of stability of implant was the deformation, equivalent stress and equivalent strain of miniscrew and bone. In addition, the lateral bending simulation analysis and experiment of the miniscrew implant were carried out to understand the stiffness of the implant, and the method of modifying the analytical model of artificial bone albinism was proposed.
The results showed that the deformation of the miniscrew was maximum at the implantation angle of 90° and minimum at 30°. The loading direction of the miniscrew should not be perpendicular to the implantation angle, otherwise it is easy to cause larger deformation of the miniscrew and larger maximum principal stress of the bone, resulting in the decrease of stability. The results of orthogonality in bone properties tend to be close to reality, while those of isotropy are underestimated. The displacement of the miniscrew is relatively large in the non-osseointegration state. In the state of osseointegration, the maximum principal stress of bone is relatively large. It shows that the stability of the miniscrew is poor without osseointegration. The simulated values of implant stiffness were significantly higher than the experimental values without considering the influence of bone autogenous layer. In this study, a modified model was proposed to adjust the size of the whitening area of the model and reduce the Young′s modulus of this area, so as to make the simulated stiffness value close to the experimental value.
關鍵字(中) ★ 矯正釘
★ 有限元素法
★ 等向性
★ 正交性
★ 骨整合
關鍵字(英) ★ Orthodontic
★ Mini-Screw
★ Finite Element Method
★ Isotropic,
★ Orthogonality,
★ Osseointegration
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1研究背景與動機 1
1-2牙齒矯正手術發展 3
1-3矯正釘之發展 4
1-4 矯正釘植入之穩定度 5
1-5有限元素法在生物力學上之應用 6
1-6研究目的 7
1-7本文架構 8
第二章 文獻回顧 9
2-1矯正釘及骨頭之材料特性 9
2-2矯正釘設計研究 10
2-3植入角度實驗 10
2-4骨整合及未骨整合之研究 12
2-5臨床及模擬驗證之研究 13
2-6規範ASTM F543-17 14
第三章 研究方法 15
3-1實驗流程 16
3-2有限元素分析 17
3-2-1有限元素法分析步驟 17
3-2-2牙科矯正釘建模及植入角度 18
3-2-3材料性質設定 19
3-2-4接觸條件設定 20
3-2-5元素及網格設定 21
3-2-6邊界條件設定 22
3-2-7分析結果之指標選用 22
3-2-8有限元素法之收斂性分析原理 23
3-3側向彎曲實驗 24
3-3-1實驗流程圖 27
3-3-2勁度公式 28
3-3-3側向彎曲實驗指標 28
3-3-4側向彎曲模擬分析 28
第四章 結果與討論 29
4-1有限元素分析之收斂性 29
4-2矯正釘植入角度與八種受力方向之影響 31
4-3骨整合及未骨整合 39
4-3-1骨整合之影響 39
4-3-2未骨整合之影響 42
4-3-3骨整合及未骨整合之討論 45
4-4人造骨之等向性及正交性之影響 47
4-5矯正釘與骨頭受力反應之對稱性 48
4-5-1有限元素分析結果之數據 49
4-6矯正釘側向彎曲實驗性能及分析模型修正 55
4-6-1有限元素分析及實驗結果比較 57
4-6-2人造骨白化現象及模型修正 58
第五章 結論與未來研究方向 61
5-1結論 61
5-2未來研究方向 62
參考文獻 63
參考文獻 [1] 陳懿,陳羿貞,「比較傳統口外錨定與迷你植體錨定於成年患者上顎齒槽前突之矯正治療結果」,碩士論文,國立台灣大學,民國95年。
[2] http://www.pittortho.com.tw/service_ortho15.htm
[3] https://blog.xuite.net/drsuortho/twblog/153703089
[4] https://blog.xuite.net/drsuortho/twblog/153703160
[5] http://www.kmuh.org.tw/www/kmcj/data/10807/14.htm
[6] https://www.allaboutsmilesortho.com/headgear/
[7] 伍紹鈞,「人工髖關節有限元素分析之整合介面開發」,中華大學,碩士論文,民國93年。
[8] 余欣儒,「有限元素法評估之新設計之頸部模組化股骨柄」,國立台北科技大學,碩士論文,民國104年。
[9] 陳雲玉,「有限元素法評估之新設計之頸部模組化股骨柄」,國立台灣科技大學,碩士論文,民國104年。
[10] 張筱偉,「逆行骨釘與鎖定骨板治療近人工膝關節骨折之有限元素比較」,國立交通大學,碩士論文,民國99年。
[11] 王俊翔,「顳顎關節盤之生物力學探討:三圍有限元素法分析」,國立成功大學,碩士論文,民國101年。
[12] 張弘學,「有限元素法評估之新設計之頸部模組化股骨柄」,國立陽明大學,碩士論文,民國94年。
[13] 蔡育銓,「腳踝矯形支架之有限元素分析與設計」,國立成功大學,碩士論文,民國98年。
[14] 魏妙俶,「血管支架之有限元素分析與設計」,國立成功大學,碩士論文,民國94年。
[15] 陳怡龍,「中空型骨釘及側孔型骨鬆用椎根骨釘的力學行為分析」,國立陽明大學,碩士論文,民國105年。
[16] 蕭文田,「牙周病菌於人工牙根之生物力學與心血管支架之血液流體動力學之整合性研究」,台北醫學大學,博士論文,民國104年。
[17] 陳筆人,「三維有限元素法模擬微牙根植體在上顎骨靠近牙齒根部所產生靜態與動態應力分布行為之研究」,國立虎尾科技大學,碩士論文,民國101年。
[18] 黃振棠,「人工牙根與之台齒之最佳化疲勞分析」,國立高雄科技大學,碩士論文,民國108年。
[19] 陳柏宏,「鈦合金(Ti6Al4V)與不鏽鋼(Stainless 316L)自鑽型矯正釘應用於牙齒矯正效能分析之研究」,國立高雄應用科技大學,碩士論文,民國101年。
[20] 廖炯琳,「迷你骨釘錨定用於雙顎前途患者之治療結果:各種骨釘錨定設置之比較」,長庚大學,碩士論文,民國98年。
[21] 葉俊杰,「齒顎矯正錨定骨釘之設計」,國立台北科技大學,碩士論文,民國97年。
[22] A. P. Bozkurt, “Effects of mechanical vibration on miniscrew implants and bone: FEM analysis,” International Orthodontics, Vol. 17, pp. 38–44, Mar. 2019.
[23] O. P. Kharbanda, N. Bhatnagar, V. D. Samrit, A. Kumar, S. Yadav, S. Anand, “Geometrical effects of orthodontic miniscrew implants and resulting distortion stresses in a simulated bone model for different applied forces: An FEM study,” ResearchGate, Jan. 2020.
[24] S. Singh, S. Mogra, V. S. Shetty, S. Shetty, and P. Philip, “Three-dimensional finite element analysis of strength, stability, and stress distribution in orthodontic anchorage: A conical, self-drilling miniscrew implant system,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 141, Iss. 3, Pages 327-336, Mar. 2012.
[25] M. C. Castaño, U. Zapata, A. Pedroza, J. D. Jaramillo, S. Roldán, “Creation of a three-dimensional model of the mandible and the TMJ in vivo by means of the finite element method,” International Journal of Computerized Dentistry, Vol. 5, Iss. 2-3, pp. 87-99, 2002.
[26] U. Wolfram, J. Schwiedrzik, “Post-yield and failure properties of cortical bone,” BoneKEy Reports 5, Article number: 829, 2016.
[27] C. Teekavanich, M. Uezono, K. Takakuda, T. Ogasawara , P. Techalertpaisarn and K. Moriyama , “Evaluation of cortical bone microdamage and primary stability of orthodontic miniscrew using a human bone analogue,” Materials 2021, Vol. 14(8), 1825, February 2021.
[28] C.-L. Lin, J.-H. Yu, H.-L. Liu, C.-H. Lin, Y.-S. Lin, “Evaluation of contributions of orthodontic mini-screw design factors based on FE analysis and the Taguchi method,” Journal of Biomechanics, Vol. 43, pp. 2174–2181, Mar. 2010.
[29] A. H. S. Haghighi , V. Pouyafar , A. Navid, M. Eskandarinezhad , T. Abdollahzadeh Baghaei , “Investigation of the optimal design of orthodontic mini-implants based on the primary stability: A finite element analysis,” Journal of Dental Research, Dental Clinics, Dental Prospects, Spring 2019, Vol. 13, Iss. 2, pp. 85-89, Aug. 2019.
[30] M. Motoyoshi, M. Inaba, A. Ono, S. Ueno, N. Shimizu, “The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone,” International Journal of Oral and Maxillofacial Surgery, Surg. 2009, Vol. 38, pp. 13–18, Sept. 2008.
[31] A. Suzuki, T. Masuda, I. Takahashi, T. Deguchi, O. Suzuki, T. T. Yamamoto, “Changes in stress distribution of orthodontic miniscrews and surrounding bone evaluated by 3-dimensional finite element analysis,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 140, Iss. 6, pp. e273-80, Dec. 2011.
[32] M. Cozzani, L. Nucci, D. Lupini, H. Dolatshahizand, D. Fazeli, E. Barzkar, E. Naeini, A. Jamilian, “The ideal insertion angle after immediate loading in Jeil, Storm, and Thunder miniscrews: A 3D-FEM study,” International Orthodontics 2020, Vol. 18, pp. 503–508, May 2020.
[33] A. N. Omar, S. S. Marwa, H. M. Shaza, “Effect of cortical bone thickness, insertion angle and force direction variations on miniscrew and surrounding bone: A finite element study,” IOSR Journal of Dental and Medical Sciences, e-ISSN: 2279-0853, p-ISSN: 2279-0861, Vol. 18, Iss. 11 Ser.9, pp 22-29, Nov. 2019.
[34] L. Zhao, Z. Xu, X. Wei, L. Zhang, J. Li, T. Tang, “Effect of placement angle on the stability of loaded titanium microscrews: A microcomputed tomographic and biomechanical analysis,” Original Article Vol. 139, Iss. 5, pp. 628-635, May 2011.
[35] T.-C. Liu , C.-H. Chang, T.-Y. Wong, J.-K. Liu, “Finite element analysis of miniscrew implants used for orthodontic anchorage,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 141, Iss. 4, pp. 468-76, Apr. 2012.
[36] S.-H. Cho, S.-J. Kim, K.-J. Lee, S.-J. Sung, Y.-S. Chun, C.-J. Hwang, “Stress distributions in peri-miniscrew areas from cylindrical and tapered miniscrews inserted at different angles,” Korean Journal of Orthodontics, Vol. 46, Iss. 4, pp. 189-98, July 2016.
[37] R. Duaibis, B. Kusnoto, R. Natarajan, L. Zhao, C. Evans, “Factors affecting stresses in cortical bone around miniscrew implants: A three-dimensional finite element study,” The Angle Orthodontist, Vol. 82, Iss. 5, pp. 875-80, Sept. 2012.
[38] N. Woodall, S. C. Tadepalli, F. Qian, N. M. Grosland, S. D. Marshall, and T. E. Southard, “Effect of miniscrew angulation on anchorage resistance,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 139, pp. e147-e152, Mar. 2011.
[39] F. M. Dastenaei, A. Hajarian, O. Zargar, M. M. Zand, S. Noorollahian, “Effects of thread shape on strength and stability of dental miniscrews against orthodontic forces,” Procedia Manufacturing, Vol. 35, pp. 1032–1038, 2019.
[40] L. Perillo, A. Jamilian, A. Shafieyoon, H. Karimi ,M. Cozzani, “Finite element analysis of miniscrew placement in mandibular alveolar bone with varied angulations,” European Journal of Orthodontics, pp. 56–59, 2015.
[41] G. Zhou, X. Zhang, H. Qie, C. Li, L. Lu, L. Shan, “Three-dimensional finite element analysis of the stability of mini-implants close to the roots of adjacent teeth upon application of bite force,” Dental Materials Journal 2018, Vol. 37, Iss. 5, pp. 851–857, 2018.
[42] X. N. Dong , Q. Luo , Xi. Wang, “Progressive post-yield behavior of human cortical bone in shear,” Bone, Vol. 53, Iss. 1, pp. 1-5, Mar. 2013.
[43] T.-V. Do, Q.-C. Hsu, P.-H. Chen, Y.-L. Chen, “Study on the performance of orthodontic self-drilling correction screw of Ti6Al4V and Stainless 316L,” Materials Science Forum, ISSN: 1662-9752, Vol. 872, pp. 276-280, June 2016.
[44] Y.-S. Lin, J.-. Yu, Y.-Z. Chang, C.-L. Lin, , “Biomechanical evaluation of an orthodontic miniimplant used with revolving (translation and rotation) temporary anchorage device by finite element analysis and experimental testing,” Implant Dentistry, Vol. 22, Iss. 1, pp. 77-82, Feb. 2013.
[45] S. E. Barros, G. Janson, K. Chiqueto, D. G. Garib, M. Janson, “Effect of mini-implant diameter on fracture risk and self-drilling efficacy,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 140(4), pp. e181-92, Oct. 2011.
[46] M. Araghbidikashani, A. Golshah, N. Nikkerdar, M, Rezaei, “In-vitro impact of insertion angle on primary stability of miniscrews,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 150, Iss. 3, pp. 436-443, Sept. 2016.
[47] J. H. Yu, Y. S. Lin, W. J. Chang, Y. Z. Chang, C. L. Lin, “Mechanical effects of micro thread orthodontic mini screw design on artificial cortical bone,” Journal of Medical and Biological Engineering, Vol. 34, Iss. 1, pp. 49-55, 2012.
[48] J.-H. Yu, Y.-T. Wang and C.-L. Lin, “Customized surgical template fabrication under biomechanical consideration by integrating CBCT image, CAD system and finite element analysis,” Dental Materials Journal, Vol. 37, Iss. 1, pp. 6-14, 2018.
[49] “Standard specification and test methods for metallic medical bone screws,” F543–17, American National Standards Institute, 2017.
[50] https://zh.wikipedia.org/wiki/%E5%89%9B%E5%BA%A6
[51] https://www.ulbrich.com/alloys/316lvm-stainless-steel-uns-s31673/
[52] C. Dissaux, D. Wagner, D. George, C. Spingarn, Y. Remond, “Mechanical impairment on alveolar bone graft: a literature review,” Journal of Cranio-Maxillo-Facial Surgery, Vol. 47, Iss. 1, pp. 149-157, 2019.
[53] X. Ding, S.-H. Liao, X.-H. Zhu, H.-M. Wang, B.-J. Zou, “Effect of orthotropic material on finite element modeling of completely dentate mandible,” Materials and Design, Vol. 84, pp. 144-153, 2015.
指導教授 黃俊仁(Jiun-Ren Hwang) 審核日期 2021-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明