博碩士論文 108323613 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:132 、訪客IP:18.222.6.144
姓名 黎寶福(Le Ba Phuoc)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 APCVD生長300mm矽晶圓過程中x流動之數值分析
(Numerical analysis of the x-flow influence on the 300mm silicon wafer epitaxial growth during the APCVD process)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 矽 (Si) 是半導體工業的重要材料,被廣泛作為矽晶片,但是目前面臨的挑戰之一是矽晶圓邊緣的均勻性較差,為了改善矽晶圓表面上的矽厚度均勻性,本研究在反應器中添加了一種噴嘴,此噴嘴稱為 x-flow。計算結果顯示,矽表面的長晶速率分布取決於x-flow流線和晶圓之間的距離及x-flow流線的範圍。除此之外,可通過x-flow改變矽晶圓表面上的三氯矽烷濃度梯度,影響矽片上矽的生長速率。因此,本研究對不同高度和不同角度以及不同成分的 x-flow進行研究,當x-flow在最大高度時流線低於主流,晶圓上三氯矽烷的局部濃度梯度變大,使晶圓上的生長速率更高。而在不同角度中,角度越大,x-flow影響的區域與晶圓邊緣的距離越大,晶圓邊緣的生長速率變化越變小。隨x-flow的成分不同,增加x-flow的三氯矽烷,使三氯矽烷的局部濃度梯度更大,晶圓邊緣的生長速率更大。
摘要(英) Silicon (Si) is known as an important material for the semiconductor industry. They are generally widely used as silicon (Si) wafers. However, one of the primary challenges is the poor uniformity of the Si-wafer edge. In this study, an injector called x-flow was added to the reactor to make the Si thickness uniformity on the Si wafer better. The computational results show that the variation of the growth rate of Si on the wafer is strongly dependent on the distance between the streamlines of x-flow and the wafer and how far the streamlines of x-flow can go. Besides, the x-flow affects the growth rate of Si on the wafer by changing the local concentration gradient of Trichlorosilane (TCS) on the wafer. Therefore, this research conducts a detail study on x-flow of different heights, different angles, and different compositions. At a maximum height of x-flow, the streamlines of main flow go below the x-flow, which increases the local concentration gradient of TCS on the wafer and makes the growth rate on the wafer higher. The bigger angle has a long distance between the affected region by x-flow and the edge of the wafer, so the bigger angle makes the change in growth rate on the edge of the wafer less. The x-flow has more TCS, which makes the local concentration gradient of TCS larger and makes the growth rate near the edge of the wafer larger.
關鍵字(中) ★ 矽晶圓
★ 晶圓邊緣
★ x-流
關鍵字(英) ★ Si wafer
★ The edge of the wafer
★ x-flow
論文目次 摘要 i
Abstract ii
Acknowledgements iii
List of Figure vi
Chapter 1: Introduction. 1
1.1 Introduction. 1
1.2 Literature review. 2
1.2.1 Numerical simulation of SiHCl3-H2 system under atmospheric pressure. 2
1.2.2 The edge of the wafer. 3
1.3 Motivation. 5
Chapter 2: Physical model and mathematical formulations. 6
2.1 Physical model. 6
2.2 Assumptions. 7
2.3 Mathematical Formulations. 7
2.3.1 Governing equations. 7
2.3.3 Chemical reaction. 12
2.3.4 Boundary conditions. 14
2.4 Mesh test. 17
Chapter 3: Results and Discussion 22
3.1 General trend inside the reactor. 22
3.2 The influence of the height of x-flow position in design 1. 30
3.3 The influence of different compositions of x-flow at x-flow design 1 41
3.3.1 Pure hydrogen of x-flow. 41
3.3.2 Pure TCS of x-flow. 43
3.3.3 The effect of volume flow rate ratio between TCS and H2 in x-flow. 46
3.3.4 The effect of fixed TCS and changing H2. 49
3.3.5 The effect of fixed total volume flow rate of x-flow. 53
3.4 The influence of different compositions of x-flow for design 2. 56
3.4.1 Pure hydrogen of x-flow. 56
3.4.2 Pure TCS. 57
3.4.3 The effect of volume flow rate ratio between TCS and H2 of x-flow. 58
3.4.4 The fixed TCS and changing H2. 60
3.4.5 The fixed total volume flow rate. 61
3.5 The reliability of the model. 62
Chapter 4: Conclusions and future work. 64
References 65
參考文獻 [1] K. F. Jensen & W. Kern, (1991). Thin Film Processes II, Eds. J. L. Vossen and W. Kern, Academic Press, New York.
[2] M. Lapedus, (2019). Mixed Outlook For Silicon Wafer Biz. https://semiengineering.com/mixed-outlook-for-silicon-wafer-biz/
[3] H. Hitoshi, T. Nagoya, M. Mayusumi, M. Katayama, M. Shimada, K. Okuyama, (1996). Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3-H2 system under atmospheric pressure. Journal of Crystal Growth. 169. 61-72. 10.1016/0022-0248(96)00376-4.
[4] H. Habuka, M. Katayama, M. Shimada and K. Okuyama, (1994). Numerical Evaluation of Silicon-Thin Film Growth from SiHCl3-H2 Gas Mixture in a Horizontal Chemical Vapor Deposition Reactor. Japanese Journal of Applied Physics. Vol 33(1994), 1977-1985.
[5] A. S. Segal, A. O. Galyukov, A. V. Kondratyev, A. P. Sid’ko, S. Y. Karpov, Y. N. Makarov, W. Siebert, P. Storck, (2001). Comparison of silicon epitaxial growth on the 200- and 300-mm wafers from trichlorosilane in Centura reactors, Microelectronic Engineering,Volume 56, Issues 1–2, 2001, Pages 93-98, ISSN 0167-9317,
[6] H. Habuka, (2001). Flatness Deterioration of Silicon Epitaxial Film Formed Using Horizontal Single-Wafer Epitaxial Reactor. Japanese Journal of Applied Physics. Vol 40(2001), 6041-6044.
[7] S. Kommu, G. M. Wilson, B. Khomami, (2000). A Theoretical/Experimental Study of Silicon Epitaxy in Horizontal Single‐Wafer Chemical Vapor Deposition Reactors. Journal of The Electrochemical Society. 147. 1538
[8] P. Ho, A. Balakrishna, M. J. Chacin, and A. Thilderkvist, (1998). In Fundamental Gas Phase and Surface Chemistry of Vapor-Phase Materials Synthesis, M. D. Allendorf, M. R. Zachariah, L. Mountziaris, and A. H. McDaniel, Editor, Vol. 98-23, p. 117, The Electrochemical Society Proceeding Series, Pennington, NJ.
[9] S. K. and B. Khomami, (2002). High-Volume Single-Wafer Reactors for Silicon Epitaxy. Industrial and engineering chemistry research. 41. 732-743.
[10] Fisher, G. Seacrist, M. Standley, Robert, (2012). Silicon Crystal Growth and Wafer Technologies. Proceedings of the IEEE. 100. 1454-1474. 10.1109/JPROC.2012.2189786.
[11] Axus technology, (2013). Wafer edge grinding process (Wafer Edge Profiling) Application Note. https://axustech.com/wp-content/uploads/2019/10/Edge-Grind-App-Note-rev-02-10-13-1.pdf
[12] Frank Burkeen, Srini Vedula, Steven Meeks – KLA-Tencor Corporation, (2007). Visualizing the Wafer’s Edge. https://www.ymsmagazine.com/wp-content/uploads/YMS_Sp07_Visualizing.pdf
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2021-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明