博碩士論文 106383001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.149.247.69
姓名 廖俞欽(Yu-Chin Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 新世代輕量中熵合金之合金設計、微結構及其性質分析之研究
(The study of alloy design, microstructure and properties characterization of novel lightweight Medium Entropy Alloys)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究
★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-30以後開放)
摘要(中) 近年來,由高熵合金以及中熵合金所構成的多元合金為材料領域熱門研究話題,打破既有合金設計規則,將合金世界的組成原則徹底翻轉。此研究應用創新的多元合金組成概念,開發國際首創輕量化新世代中熵合金,除了擁有低密度特性且具有優異的機械性質。透過合金改質可以有效的提升鑄造合金之性質,不只在機械性質有顯著的提升且更是展現富鈦中熵合金的無窮潛力。更出色的是,透過熱機處理可以使合金比強度提升至可衝擊國際期刊之水準。最後也進行大尺寸塊材的開發,與實驗室尺寸相對應提供可靠性,為未來產業應用鋪下一條康莊大道。此研究是未來國際上研究富鈦中熵合金發展之藍圖,將成為材料領域之領頭羊,應用創新材料以及創新強化理論推廣至台灣產業端,促進國家科技發展,引領台灣產業走向國際舞台。
摘要(英) Recently, multi-principal elements alloys (MPEAs) become a one of the breakthroughs in the news class of materials world due to the extremely complex composition and the plenty of excellent properties. They are generally called as high entropy alloys(HEAs) and medium entropy alloys(MEAs), and also widely known as complex-concentrated alloys (CCAs). Most of well-known and well-studied MPEAs contain large proportion of heavy transition metal elements. In contrast, less attraction was held in lightweight MPEAs areas due to the limited selections of elements. However, development of lightweight materials with high strength and ductility is the hot issue in the structural materials community not only for energy transformation efficiency but the fuel consumption. Hence, designing a lightweight (~ 5 g/cm3) MPEAs with well-balanced strength-ductility synergy (1500 MPa, 20%) is the core goal of this research.
Firstly, a non-equiatoic quaternary alloy system, Tix(AlCrNb)100-x, was designed by using CALPHAD (acronym of the calculation of phase diagrams). The simulation results show that a single body centered cubic (BCC) phase can be formed, being stable at temperatures higher than 950ºC. All of these alloys exhibit superior mechanical properties with high yield strength and high plasticity (more than 30% plastic strain) at room temperature. Meanwhile, the Ti-65 alloy demonstrated a tensile elongation up to 32% plastic strain and 1,200 MPa fracture strength for the sample with homogenization treatment for 24 h. The specific tensile strength can reach to 0.243 GPa∙cm3/g.
Secondly, solid-solution strengthening was used to expand the potential of alloys designing and also improve the mechanical properties of cast Ti-65 alloys. Lightweight nonequiatomic Ti60(Al)x(VCrNb)40-x (x = 6, 8, 10, 12, and 18 at.%) medium-entropy alloys (MEAs) were designed by CALPHAD. The density of these cast alloys decreased with an increase in Al concentration from 5.45 to 4.79 g/cm3. All of these cast alloys exhibited a body-centered cubic (BCC) microstructure. However, a nano-sized ordered B2 phase was identified in the cast alloys with higher Al concentrations (Al-12 and Al-18). The prediction of BCC phase formation using CALPHAD was consistent with the experimental results. These BCC-structured alloys can withstand over 50% strain at room temperature, which demonstrates excellent compressive ductility. Moreover, the results demonstrate that the as-cast Al-6 and Al-8 samples had superior plasticity under tensile testing, with a tensile strength of 1120 MPa and approximately 30% plastic strain. Furthermore, with an increase in Al concentration, the alloys exhibited a notable trend in yield strength and a decreasing trend in plastic strain. The change in mechanical properties of these MEAs caused by the formation of B2 nanoparticles was also investigated.
Thirdly, thermomechanical treatment was conducted on Ti65(AlCrNb)35 medium-entropy alloy(Ti-65) to further improve the mechanical properties by dislocation strengthening. Ti-65 ingots were produced by arc-melting and drop casting in a water cooled-copper mold. Then these alloy ingots were treated by the process sequence of homogenization, hot rolling, cold rolling, and recrystallization. The effect of thermomechanical treatment (TMT) on microstructures and mechanical properties were investigated using X-ray diffraction (XRD), Electron back-scattered diffraction analysis in scanning electron microscope (SEM-EBSD), and mechanical testing instrument. Results of XRD show that Ti-65 alloy maintained BCC structure after 50% hot-rolling, 70% cold-rolling, and recrystallization at 900℃, 1000℃ and 1100℃, respectively. The fully recrystallized sample has 80% smaller grain size than the as-cast sample. Meanwhile, the cold-rolled Ti-65 alloy specimen exhibited high tensile strength of 1620 MPa. Moreover, in comparison with the tensile strength of as-cast Ti-65 sample (1100 MPa), a significant increase in tensile strength (1380 MPa) for the Ti65 alloy after partial recrystallization annealing. The enhancement of tensile strength is attributed its hetero-structure composed of deformed bands and smaller recrystallized grains. This demonstrated that excellent ductility-strength synergy of this Ti-65 alloy can be achieved through various thermomechanical treatment. In order to break through the limits of strength-ductility trade-off, rapid annealing treatment was further optimized to obtain the heterogeneous structured Ti-65 MEA with extraordinary mechanical tensile properties (strength of 1500 MPa, ductility of 25%).
Finally, large dimension Ti-65 MEAs (2 kg) are produced by induction skull melting. The microstructure and the mechanical hardness of these cold-rolled and annealed specimens are explored. The similar results reveal that the Ti-65 MEA appears to be a promising material for industrial application.
Overall, the aim of this research is to design the novel lightweight Ti-rich MEAs systems with promising mechanical tensile properties. Traditional and innovative strengthening mechanisms were used to push the limits of mechanical properties of these investigated MEAs. In addition to exploring the effect of strengthening mechanisms, this work provides the blueprint for developing the heterogeneous structured lightweight Ti-rich MEAs from alloys design, optimization of mechanical properties to commercial production. Undoubtedly, this is only the beginning, the various lightweight MEAs systems with extraordinary mechanical tensile properties will be developed in the future, and these alloys with immense potential absolutely will become the game changers in the structural materials community.
關鍵字(中) ★ 高熵合金
★ 中熵合金
★ 輕量材料
★ 熱機處理
★ 異構組織
★ 機械性質
關鍵字(英) ★ high-entropy alloys
★ medium-entropy alloys
★ lightweight
★ thermomechanical treatment
★ heterogeneous structure
★ mechanical property
論文目次 Chapter 1 Introduction 1
Chapter 2 Background 3
2.1 High-entropy Alloys (HEAs) 3
2.1.1 Ignition of the research on High-entropy alloys 3
2.1.2 Definition of High-entropy alloys 3
2.1.3 Core effects of HEAs 5
2.1.4 Thermodynamic criterion for solid solution 5
2.2 Lightweight HEAs 6
2.3 Non-equiatomic medium entropy alloys (MEAs) 7
2.4 Strength-ductility trade-off 8
2.5 Heterogeneous structure 9
Chapter 3 Experimental procedures 11
3.1 Alloys design 11
3.2 Production 11
3.2.1 Melting and casting 11
3.2.2 Heat treatment 12
3.2.3 Thermomechanical treatment 12
3.3 Characterization techniques 12
3.3.1 Density 12
3.3.2 X-ray Diffraction characterization (XRD) 13
3.3.3 Scanning Electron Microscope (SEM) and Electron backscatter diffraction (EBSD) 13
3.3.4 electron probe x-ray microanalysis (EPMA) and transmission electron microscopy (TEM) 13
3.3.5 Differential Scanning Calorimetry(DSC) 13
3.4 Analysis of mechanical properties 13
3.4.1 Hardness 13
3.4.2 Compressive test 14
3.4.3 Tensile test 14
Chapter 4 Results and discussions 15
4.1 Equiatomic Ti-Al-X alloys systems 15
4.2 Quaternary Ti-rich alloy system 16
4.2.1 Density 16
4.2.2 X-ray Diffraction (XRD) 16
4.2.3 EBSD observation 17
4.2.4 Thermal stability 17
4.2.5 Mechanical properties 17
4.3 Quinary Ti-rich alloy system 19
4.3.1 Density, phase identification, and microstructure characterization 19
4.3.2 Mechanical properties at room temperature 20
4.3.3 Strengthening mechanisms 21
4.3.4 Effect of B2 nanoparticles on the mechanical properties of these cast MEAs 23
4.4 Thermomechanical treatment on quaternary Ti-65 MEA 25
4.4.1 Density, phase identification, and microstructure characterization 25
4.4.2 Grain refinement 25
4.4.3 Partial recrystallization 27
4.5 Optimization of annealing treatment on Ti-65 MEA 29
4.5.1 Microstructure analysis 29
4.5.2 Mechanical tensile properties 29
4.6 Large-dimension production of Ti-65 MEA 31
4.6.1 Microstructure analysis 31
4.6.2 Mechanical hardness results 31
Chapter 5 Conclusions 32
Chapter 6 References 34
參考文獻 1. Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., &Chang, S. Y. (2004). Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299–303. https://doi.org/10.1002/adem.200300567
2. Cantor, B., Chang, I. T. H., Knight, P., &Vincent, A. J. B. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A, 375–377(1-2 SPEC. ISS.), 213–218. https://doi.org/10.1016/j.msea.2003.10.257
3. Miracle, D., & Senkov, O. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511. https://doi.org/10.1016/j.actamat.2016.08.081
4. Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., &Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. In Progress in Materials Science (Vol. 61, pp. 1–93). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2013.10.001
5. Maulik, O., Kumar, D., Kumar, S., Dewangan, S. K., &Kumar, V. (2018). Structure and properties of lightweight high entropy alloys: A brief review. In Materials Research Express (Vol. 5, Issue 5). Institute of Physics Publishing. https://doi.org/10.1088/2053-1591/aabbca
6. Feng, R., Gao, M. C., Lee, C., Mathes, M., Zuo, T., Chen, S., Hawk, J. A., Zhang, Y., &Liaw, P. K. (2016). Design of light-weight high-entropy alloys. Entropy, 18(9), 16–29. https://doi.org/10.3390/e18090333
7. Qiu, Y., Hu, Y. J., Taylor, A., Styles, M. J., Marceau, R. K. W., Ceguerra, A.V., Gibson, M. A., Liu, Z. K., Fraser, H. L., &Birbilis, N. (2017). A lightweight single-phase AlTiVCr compositionally complex alloy. Acta Materialia, 123, 115–124. https://doi.org/10.1016/j.actamat.2016.10.037
8. Stepanov, N. D., Yurchenko, N. Y., Skibin, D.V., Tikhonovsky, M. A., &Salishchev, G. A. (2015). Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. Journal of Alloys and Compounds, 652, 266–280. https://doi.org/10.1016/j.jallcom.2015.08.224
9. Youssef, K. M., Zaddach, A. J., Niu, C., Irving, D. L., &Koch, C. C. (2014). A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters, 3(2), 95–99. https://doi.org/10.1080/21663831.2014.985855
10. Yao, M. J., Pradeep, K. G., Tasan, C. C., &Raabe, D. (2014). A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia, 72–73(February), 5–8. https://doi.org/10.1016/j.scriptamat.2013.09.030
11. Deng, Y., Tasan, C. C., Pradeep, K. G., Springer, H., Kostka, A., &Raabe, D. (2015). Design of a twinning-induced plasticity high entropy alloy. Acta Materialia, 94, 124–133. https://doi.org/10.1016/j.actamat.2015.04.014
12. Li, Z., Pradeep, K. G., Deng, Y., Raabe, D., &Tasan, C. C. (2016). Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 534(7606), 227–230. https://doi.org/10.1038/nature17981
13. Liang, Y., Wang, L., Wen, Y., Cheng, B., Wu, Q., & Cao, T. et al. (2018). High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-06600-8
14. Li, Z., &Raabe, D. (2017). Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties. In JOM (Vol. 69, Issue 11, pp. 2099–2106). Minerals, Metals and Materials Society. https://doi.org/10.1007/s11837-017-2540-2
15. Ranganathan, S. (2003). Alloyed pleasures: Multimetallic cocktails. In CURRENT SCIENCE (Vol. 85, Issue 10).
16. Yeh, J. W., Chen, Y. L., Lin, S. J., &Chen, S. K. (2007). High-entropy alloys - A new era of exploitation. Materials Science Forum, 560, 1–9. https://doi.org/10.4028/www.scientific.net/MSF.560.1
17. Fultz, B. (2010). Vibrational thermodynamics of materials. In Progress in Materials Science. https://doi.org/10.1016/j.pmatsci.2009.05.002
18. Swalin, R. A., &Arents, J. (1962). Thermodynamics of Solids. Journal of The Electrochemical Society. https://doi.org/10.1149/1.2425309
19. Yeh, J. W. (2013). Alloy design strategies and future trends in high-entropy alloys. Jom, 65(12), 1759–1771. https://doi.org/10.1007/s11837-013-0761-6
20. Yeh, J. W. (2006). Recent progress in high-entropy alloys. Annales de Chimie: Science Des Materiaux, 31(6), 633–648. https://doi.org/10.3166/acsm.31.633-648
21. Tsai, K. Y., Tsai, M. H., &Yeh, J. W. (2013). Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Materialia, 61(13), 4887–4897. https://doi.org/10.1016/j.actamat.2013.04.058
22. Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., Zhang, W., &Makino, A. (2013). Entropies in alloy design for high-entropy and bulk glassy alloys. Entropy, 15(9), 3810–3821. https://doi.org/10.3390/e15093810
23. Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., &Liaw, P. K. (2008). Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 10(6), 534–538. https://doi.org/10.1002/adem.200700240
24. Zhang, Y., Yang, X., &Liaw, P. K. (2012). Alloy design and properties optimization of high-entropy alloys. In JOM (Vol. 64, Issue 7, pp. 830–838). https://doi.org/10.1007/s11837-012-0366-5
25. Yang, X., &Zhang, Y. (2012). Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2–3), 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021
26. Guo, S., &Liu, C. T. (2011). Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 21(6), 433–446. https://doi.org/10.1016/S1002-0071(12)60080-X
27. Schubert, E., Klassen, M., Zerner, I., Walz, C., &Sepold, G. (2001). Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry. Journal of Materials Processing Technology, 115(1), 2–8. https://doi.org/10.1016/S0924-0136(01)00756-7
28. Cheah, L. W., &Heywood, J. B. (2010). Cars on a Diet : The Material and Energy Impacts of Passenger Vehicle Weight Reduction in the U . S . Engineering. https://doi.org/http://web.mit.edu/sloan-auto-lab/research/beforeh2/files/LCheah_PhD_thesis_2010.pdf
29. Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., DeSmet, P., Haszler, A., &Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering A, 280(1), 37–49. https://doi.org/10.1016/S0921-5093(99)00653-X
30. Li, R., Gao, J., &Fa, K. (2010). Study to microstructure and mechanical properties of Mg containing high entropy alloys. Materials Science Forum, 650, 265–271. https://doi.org/10.4028/www.scientific.net/MSF.650.265
31. Li, R., Gao, J. C., &Fan, K. (2011). Microstructure and mechanical properties of MgMnAlZnCu high entropy alloy cooling in three conditions. Materials Science Forum, 686, 235–241. https://doi.org/10.4028/www.scientific.net/MSF.686.235
32. Senkov, O., Senkova, S., Woodward, C., & Miracle, D. (2013). Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 61(5), 1545-1557. https://doi.org/10.1016/j.actamat.2012.11.032
33. Yurchenko, N., Stepanov, N., Shaysultanov, D., Tikhonovsky, M., & Salishchev, G. (2016). Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x=0; 0.25; 0.5; 1) high-entropy alloys. Materials Characterization, 121, 125-134. https://doi.org/10.1016/j.matchar.2016.09.039
34. Senkov, O., Senkova, S., Miracle, D., & Woodward, C. (2013). Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Materials Science And Engineering: A, 565, 51-62. https://doi.org/10.1016/j.msea.2012.12.018
35. Stepanov, N. D., Shaysultanov, D. G., Salishchev, G. A., &Tikhonovsky, M. A. (2015). Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Materials Letters, 142, 153–155. https://doi.org/10.1016/j.matlet.2014.11.162
36. Feng, R., Gao, M. C., Zhang, C., Guo, W., Poplawsky, J. D., Zhang, F., Hawk, J. A., Neuefeind, J. C., Ren, Y., &Liaw, P. K. (2018). Phase stability and transformation in a light-weight high-entropy alloy. Acta Materialia, 146, 280–293. https://doi.org/10.1016/j.actamat.2017.12.061
37. Maulik, O., &Kumar, V. (2015). Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Materials Characterization, 110, 116–125. https://doi.org/10.1016/j.matchar.2015.10.025
38. Maulik, O., Kumar, D., Kumar, S., Fabijanic, D. M., &Kumar, V. (2016). Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics, 77, 46–56. https://doi.org/10.1016/j.intermet.2016.07.001
39. Du, X. H., Wang, R., Chen, C., Wu, B. L., &Huang, J. C. (2017). Preparation of a light-weight MgCaAlLiCu high-entropy alloy. Key Engineering Materials, 727, 132–135. https://doi.org/10.4028/www.scientific.net/KEM.727.132
40. Tseng, K. K., Yang, Y. C., Juan, C. C., Chin, T. S., Tsai, C. W., &Yeh, J. W. (2018). A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35. Science China Technological Sciences, 61(2), 184–188. https://doi.org/10.1007/s11431-017-9073-0
41. Zepon, G., Leiva, D. R., Strozi, R. B., Bedoch, A., Figueroa, S. J. A., Ishikawa, T. T., &Botta, W. J. (2018). Hydrogen-induced phase transition of MgZrTiFe0.5Co0.5Ni0.5 high entropy alloy. International Journal of Hydrogen Energy, 43(3), 1702–1708. https://doi.org/10.1016/j.ijhydene.2017.11.106
42. Wang, Y. P., Li, B. S., &Fu, H. Z. (2009). Solid solution or intermetallics in a high-entropy alloy. Advanced Engineering Materials, 11(8), 641–644. https://doi.org/10.1002/adem.200900057
43. Otto, F., Dlouhý, A., Pradeep, K. G., Kuběnová, M., Raabe, D., Eggeler, G., &George, E. P. (2016). Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Materialia, 112, 40–52. https://doi.org/10.1016/j.actamat.2016.04.005
44. Tasan, C. C., Deng, Y., Pradeep, K. G., Yao, M. J., Springer, H., &Raabe, D. (2014). Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System. Jom, 66(10), 1993–2001. https://doi.org/10.1007/s11837-014-1133-6
45. Otto, F., Yang, Y., Bei, H., &George, E. P. (2013). Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia, 61(7), 2628–2638. https://doi.org/10.1016/j.actamat.2013.01.042
46. Lei, Z., Liu, X., Wu, Y., Wang, H., Jiang, S., & Wang, S. et al. (2018). Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 563(7732), 546-550. https://doi.org/10.1038/s41586-018-0685-y
47. Praveen, S., &Kim, H. S. (2018). High-Entropy Alloys: Potential Candidates for High-Temperature Applications – An Overview. Advanced Engineering Materials, 20(1). https://doi.org/10.1002/adem.201700645
48. Ren, Y., Zhou, S. M., Xue, Z. Y., Luo, W. B., Ren, Y. J., &Zhang, Y. J. (2017). Effect of α-Platelet Thickness on the Mechanical Properties of Ti-6Al-4V Alloy with Lamellar Microstructure. IOP Conference Series: Materials Science and Engineering, 281(1). https://doi.org/10.1088/1757-899X/281/1/012024
49. Zhang, Z. X., Qu, S. J., Feng, A. H., &Shen, J. (2017). Achieving grain refinement and enhanced mechanical properties in Ti–6Al–4V alloy produced by multidirectional isothermal forging. Materials Science and Engineering A, 692, 127–138. https://doi.org/10.1016/j.msea.2017.03.024
50. Liu, W. H., Wu, Y., He, J. Y., Nieh, T. G., &Lu, Z. P. (2013). Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia, 68(7), 526–529. https://doi.org/10.1016/j.scriptamat.2012.12.002
51. Wu, D., Zhang, J., Huang, J. C., Bei, H., &Nieh, T. G. (2013). Grain-boundary strengthening in nanocrystalline chromium and the Hall-Petch coefficient of body-centered cubic metals. Scripta Materialia, 68(2), 118–121. https://doi.org/10.1016/j.scriptamat.2012.09.025
52. Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P., &Liaw, P. K. (2010). Refractory high-entropy alloys. Intermetallics, 18(9), 1758–1765. https://doi.org/10.1016/j.intermet.2010.05.014
53. Mohamed, A. M. A., Samuel, A. M., Samuel, F. H., &Doty, H. W. (2009). Influence of additives on the microstructure and tensile properties of near-eutectic Al-10.8%Si cast alloy. Materials and Design, 30(10), 3943–3957. https://doi.org/10.1016/j.matdes.2009.05.042
54. Gencalp Irizalp, S., &Saklakoglu, N. (2014). Effect of Fe-rich intermetallics on the microstructure and mechanical properties of thixoformed A380 aluminum alloy. Engineering Science and Technology, an International Journal, 17(2), 58–62. https://doi.org/10.1016/j.jestch.2014.03.006
55. Zhou, Y., Zhou, D., Jin, X., Zhang, L., Du, X., & Li, B. (2018). Design of non-equiatomic medium-entropy alloys. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-19449-0
56. Hughes, D., Hansen, N., & Bammann, D. (2003). Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scripta Materialia, 48(2), 147-153. https://doi.org/10.1016/s1359-6462(02)00358-5
57. Meyers, M., & Chawla, K. (2009). Mechanical behavior of materials. Cambridge University Press.
58. Zhu, T., & Li, J. (2010). Ultra-strength materials. Progress In Materials Science, 55(7), 710-757. https://doi.org/10.1016/j.pmatsci.2010.04.001
59. Koch, C., & Schunk, D. (2013). Limiting Liability? — Risk and Ambiguity Attitudes Under Real Losses. Schmalenbach Business Review, 65(1), 54-75. https://doi.org/10.1007/bf03396850
60. Wang, Y., Chen, M., Zhou, F., & Ma, E. (2002). High tensile ductility in a nanostructured metal. Nature, 419(6910), 912-915. https://doi.org/10.1038/nature01133
61. Ritchie, R. (2011). The conflicts between strength and toughness. Nature Materials, 10(11), 817-822. https://doi.org/10.1038/nmat3115
62. Valiev, R., Alexandrov, I., Zhu, Y., & Lowe, T. (2002). Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation. Journal Of Materials Research, 17(1), 5-8. https://doi.org/10.1557/jmr.2002.0002
63. Ma, E., & Zhu, T. (2017). Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Materials Today, 20(6), 323-331. https://doi.org/10.1016/j.mattod.2017.02.003
64. Huang, C., Wang, Y., Ma, X., Yin, S., Höppel, H., & Göken, M. et al. (2018). Interface affected zone for optimal strength and ductility in heterogeneous laminate. Materials Today, 21(7), 713-719. https://doi.org/10.1016/j.mattod.2018.03.006
65. Tang, Z., Yuan, T., Tsai, C., Yeh, J., Lundin, C., & Liaw, P. (2015). Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Materialia, 99, 247-258. https://doi.org/10.1016/j.actamat.2015.07.004
66. Fleck, N., Kang, K., & Ashby, M. (1994). Overview no. 112. Acta Metallurgica Et Materialia, 42(2), 365-381. https://doi.org/10.1016/0956-7151(94)90493-6
67. Kim, J., Jang, M., Park, H., Chin, K., Lee, S., & Kim, H. (2019). Back-Stress Effect on the Mechanical Strength of TWIP-IF Steels Layered Sheet. Metals And Materials International, 25(4), 912-917. https://doi.org/10.1007/s12540-019-00258-7
68. Zhu, Y., & Wu, X. (2019). Perspective on hetero-deformation induced (HDI) hardening and back stress. Materials Research Letters, 7(10), 393-398. https://doi.org/10.1080/21663831.2019.1616331
69. Wu, X., & Zhu, Y. (2017). Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Materials Research Letters, 5(8), 527-532. https://doi.org/10.1080/21663831.2017.1343208
70. Yang, M., Yuan, F., Xie, Q., Wang, Y., Ma, E., & Wu, X. (2016). Strain hardening in Fe–16Mn–10Al–0.86C–5Ni high specific strength steel. Acta Materialia, 109, 213-222. https://doi.org/10.1016/j.actamat.2016.02.044
71. Ashby, M. (1970). The deformation of plastically non-homogeneous materials. The Philosophical Magazine: A Journal Of Theoretical Experimental And Applied Physics, 21(170), 399-424. https://doi.org/10.1080/14786437008238426
72. Wu, X., Yang, M., Yuan, F., Wu, G., Wei, Y., Huang, X., & Zhu, Y. (2015). Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proceedings Of The National Academy Of Sciences, 112(47), 14501-14505. https://doi.org/10.1073/pnas.1517193112
73. Wu, X., Jiang, P., Chen, L., Zhang, J., Yuan, F., & Zhu, Y. (2014). Synergetic Strengthening by Gradient Structure. Materials Research Letters, 2(4), 185-191. https://doi.org/10.1080/21663831.2014.935821
74. Yang, M., Pan, Y., Yuan, F., Zhu, Y., & Wu, X. (2016). Back stress strengthening and strain hardening in gradient structure. Materials Research Letters, 4(3), 145-151. https://doi.org/10.1080/21663831.2016.1153004
75. Yang, M., Yuan, F., Xie, Q., Wang, Y., Ma, E., & Wu, X. (2016). Strain hardening in Fe–16Mn–10Al–0.86C–5Ni high specific strength steel. Acta Materialia, 109, 213-222. https://doi.org/10.1016/j.actamat.2016.02.044
76. Zherebtsov, S., Yurchenko, N., Panina, E., Tikhonovsky, M., & Stepanov, N. (2020). Gum-like mechanical behavior of a partially ordered Al5Nb24Ti40V5Zr26 high entropy alloy. Intermetallics, 116, 106652. https://doi.org/10.1016/j.intermet.2019.106652
77. Tian, Q., Zhang, G., Yin, K., Wang, W., Cheng, W., & Wang, Y. (2019). The strengthening effects of relatively lightweight AlCoCrFeNi high entropy alloy. Materials Characterization, 151, 302-309. https://doi.org/10.1016/j.matchar.2019.03.006
78. Wang, Z., Fang, Q., Li, J., Liu, B., & Liu, Y. (2018). Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys. Journal Of Materials Science & Technology, 34(2), 349-354. https://doi.org/10.1016/j.jmst.2017.07.013
79. 21. Zhang, X., Huang, J., Lin, P., Liu, T., Wu, Y., & Li, W. et al. (2020). Microstructure and mechanical properties of Tix(AlCrVNb)100-x light weight multi-principal element alloys. Journal Of Alloys And Compounds, 831, 154742. https://doi.org/10.1016/j.jallcom.2020.154742
80. Petch, N. (1958). The ductile-brittle transition in the fracture of α-iron: I. Philosophical Magazine, 3(34), 1089-1097. https://doi.org/10.1080/14786435808237038
81. Wu, Z., Bei, H., Pharr, G., & George, E. (2014). Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Materialia, 81, 428-441. https://doi.org/10.1016/j.actamat.2014.08.026
82. Labusch, R. (1970). A Statistical Theory of Solid Solution Hardening. Physica Status Solidi (B), 41(2), 659-669. https://doi.org/10.1002/pssb.19700410221\r 83. Fleischer, R. (1963). Substitutional solution hardening. Acta Metallurgica, 11(3), 203-209. https://doi.org/10.1016/0001-6160(63)90213-x
84. Senkov, O., Scott, J., Senkova, S., Miracle, D., & Woodward, C. (2011). Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal Of Alloys And Compounds, 509(20), 6043-6048. https://doi.org/10.1016/j.jallcom.2011.02.171
85. Soni, V., Senkov, O., Gwalani, B., Miracle, D., & Banerjee, R. (2018). Microstructural Design for Improving Ductility of An Initially Brittle Refractory High Entropy Alloy. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-27144-3
86. Yuan, B., Li, C., Yu, H., & Sun, D. (2010). Influence of hydrogen content on tensile and compressive properties of Ti–6Al–4V alloy at room temperature. Materials Science And Engineering: A, 527(16-17), 4185-4190. https://doi.org/10.1016/j.msea.2010.03.052
87. Liao, Y., Li, T., Tsai, P., Jang, J., Hsieh, K., & Chen, C. et al. (2020). Designing novel lightweight, high-strength and high-plasticity Ti (AlCrNb)100- medium-entropy alloys. Intermetallics, 117, 106673. https://doi.org/10.1016/j.intermet.2019.106673
88. Wei, Y., Li, Y., Zhu, L., Liu, Y., Lei, X., & Wang, G. et al. (2014). Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4580
89. Zhang, C., Zhu, C., Cao, P., Wang, X., Ye, F., & Kaufmann, K. et al. (2020). Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy. Acta Materialia, 199, 602-612. https://doi.org/10.1016/j.actamat.2020.08.043
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2021-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明