博碩士論文 107326018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.142.132.253
姓名 杜侑倫(Yu-Lun Tu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 自製光觸媒催化材料應用於去除 甲苯之可行性研究
(Feasibility study on removal of toluene by prepared air-purifying photocatalyst)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-1以後開放)
摘要(中) 本研究嘗試結合高壓蒸氣技術(控制蒸氣壓力0.9 MPa、蒸氣溫度190 °C、反應時間8小時)及奈米二氧化鈦塗層技術,評估漿紙污泥煅燒灰製備為輕質化光觸媒催化材料之可行性。為驗證光觸媒催化之功能特性,除進行材料之特性分析外,並以模擬空氣淨化試驗,評估其去除甲苯之能力。輕質化材料試驗結果顯示,在鈣矽比(CaO/SiO2)控制在1.11及調濕養護之條件下,材料特性除符合輕質化材料之體密度(1.07 g/cm3)及視孔隙率(57.13%)之要求外,材料之抗壓強度可達57 kg/cm2以上,符合相關高壓蒸氣養護輕質氣泡混凝土之產品規範。光觸媒材料之主要晶相,係以鈣矽水合物(C-S-H)、方解石(Calcite, CaCO3)、勃姆石(Boehmite, AlO(OH))及矽酸鈣(Ca2SiO4)等為主。空氣淨化試驗結果顯示,相較於未塗佈TiO2之材料,塗佈0.5%、1.0%及1.5% TiO2之光觸媒材料,具較佳之光催化活性,其中尤以1.0% TiO2之光觸媒材料,具最佳之光催化活性及耐久性,就CO2礦化率而言,可達81.88%,然經五次重複試驗後,礦化率降低至3.59%。本研究以漿紙污泥煅燒灰製備輕質化材料,於表面塗佈二氧化鈦後,初步驗證可藉由光催化特性將甲苯轉換為二氧化碳。整體而言,本研究雖具後續應用發展之潛力,然未來仍需進一步探討與評估甲苯之去除反應機制,以釐清自製輕質化光觸媒催化材料之應用可行性。
摘要(英) This study investigates the characterization of air-purifying photocatalyst lightweight material manufactured by paper mill sludge calcined ash by combination of autoclaving technique (steam pressure 0.9 MPa, steam temperature 190 °C, and reaction time 8 hours) and nano-titanium dioxide (TiO2) coating technology. In order to evaluate the catalytic ability of prepared air-purifying photocatalyst, the toluene removal experiments were also conducted.
In the case of CaO/SiO2 ratio 1.11 and curing by humidity control, the experimental results indicated that the lightweight material has not only met the criteria of relevant autoclaving lightweight material with bulk density (1.07 g/cm3) and apparent porosity (57.13%), but also has the good performance of compressive strength (higher than 57 kg/cm2).The mainly crystal phases of the lightweight material were identified by XRD including calcium silicon hydrate (C-S-H), Calcite(CaCO3), Boehmite(AlO(OH)), and Ca2SiO4. According to the analysis results of the air purification test, the prepared catalysts containing 0.5%, 1.0%, and 1.5% TiO2 have a good photocatalytic characteristics. Especially for 1.0% TiO2 air-purifying photocatalyst, it presents the best photocatalytic activity with corresponding to 81.88% of CO2 mineralization rate. On the other hand, the prepared catalyst durability seems not to be good enough. After five cycles, the CO2 mineralization rate was decreased to 3.59%. In this study, the prepared air-purifying photocatalyst could provide the good photocatalytic characteristics to convert toluene into CO2. Although the prepared air-purifying photocatalyst have a good potential for application; however, to clarify the long-term application and market development of air-purifying photocatalyst lightweight material, it is necessary to further discuss and evaluate the toluene removal mechanism in the future.
關鍵字(中) ★ 光觸媒催化材料
★ 高壓蒸氣技術
★ 漿紙污泥
★ 二氧化鈦
關鍵字(英) ★ air-purifying photocatalyst
★ autoclaving
★ paper mill sludge
★ titanium dioxide
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 ix
表目錄 ix
第一章 前言 1
第二章 文獻回顧 5
2-1漿紙污泥之處理現況 5
2-1-1漿紙污泥及漿紙污泥灰產量及處理現況 5
2-1-2漿紙污泥及漿紙污泥灰之物化特性 8
2-2高壓蒸氣技術之原理機制與應用 13
2-2-1高壓蒸氣技術之原理機制 13
2-2-2操作條件及鈣矽比對材料之影響 14
2-2-3高壓蒸氣技術研究與應用 17
2-2-4國內廢棄物轉換為材料之相關研究 24
2-3光催化氧化處理室內空氣污染物 27
2-3-1室內空氣污染物之來源及危害 27
2-3-2二氧化鈦光催化氧化原理機制 29
2-3-3光催化氧化甲苯之反應途徑及副產物 34
2-3-4光催化氧化不同參數對去除效率的影響 38
2-3-5光催化材料去除VOCs的應用 47
2-3-6光催化材料去除NOx及其他應用 56
第三章 研究材料與方法 63
3-1實驗材料 63
3-2實驗操作條件 64
3-2-1預先試驗 64
3-2-2塗佈TiO2試驗 65
3-2-3空氣淨化試驗 66
3-2-4實驗設備 68
3-3實驗方法與分析項目 73
第四章 結果與討論 77
4-1研究材料基本特性分析 77
4-1-1漿紙污泥及煅燒灰之化學組成 77
4-1-2煅燒灰之粒徑分析 79
4-1-3漿紙污泥及煅燒灰熱重損失之分析結果 80
4-1-4煅燒灰之物種鑑定及微觀結構 81
4-2光觸媒催化材料之特性分析 83
4-2-1預先試驗分析結果 83
4-2-2材料之晶相物種鑑定 85
4-2-3材料之紅外線光譜分析結果 86
4-2-4二氧化鈦塗層之均勻性及微觀結構 88
4-3光觸媒催化材料去除甲苯之可行性 92
4-3-1空白試驗 92
4-3-2二氧化鈦含量對甲苯降解效率之影響 93
4-3-3材料之重複性試驗 99
4-3-4光催化反應後材料之晶相物種及微觀結構 103
第五章 結論與建議 109
5-1結論 109
5-2建議 111
參考文獻 113
參考文獻 Abbas, N., Hussain, M., Russo, N., Saracco, G., 2011. Studies on the activity and deactivation of novel optimized TiO2 nanoparticles for the abatement of VOCs. Chemical Engineering Journal, 175, 330–340.
Ângelo, J., Andrade, L., Madeira, L. M., Mendes A., 2013. An overview of photocatalysis phenomena applied to NOx abatement. Journal of Environmental Management, 129, 522–539.
Arabi, N., Jauberthie, R., Chelghou, N., Molez, L., 2015. Formation of C-S-H in calcium hydroxide–blast furnace slag– quartz–water system in autoclaving conditions. Advances in Cement Research, 27, 3, 153–162.
Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G., Palmisano, L., Schiavello, M., 1999. Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation. Applied Catalysis B: Environmental, 20, 15–27 .
Basso, A., Battisti, A. P., Moreira, R. F. P. M., José, H. J., 2018. Photocatalytic effect of addition of TiO2 to acrylic-based paint for passive toluene degradation. Environmental Technology, 1–10.
Binas, V., Venieri, D., Kotzias, D., Kiriakidis, G., 2017. Modified TiO2 based photocatalysts for improved air and health quality. J Materiomics, 3, 3–16.
Boyjoo, Y., Sun, H., Liu, J., Pareek, V. K., Wang, S., 2017. A review on photocatalysis for air treatment: From catalyst development to reactor design. Chemical Engineering Journal, 310, 537–559.
Cai, L., Ma, B., Li, X., Lv, Y., Liu, Z., Jian, S., 2016a. Mechanical and hydration characteristics of autoclaved aerated concrete (AAC) containing iron-tailings: Effect of content and fineness. Construction and Building Materials, 128, 361–372.
Cai, L., Ding, L., Luo, H., Yi, X., 2019a. Preparation of autoclave concrete from basaltic lunar regolith simulant: Effect of mixture and manufacture process. Construction and Building Materials, 207, 373–386.
Cai, L., Li, X., Liu, W., Ma, B., Lv, Y., 2019b. The slurry and physical-mechanical performance of autoclaved aerated concrete with high content solid wastes: Effect of grinding process. Construction and Building Materials, 218, 28–39.
Cai, Z., Ma, X., Fang, S., Yu, Z., Lin, Y., 2016b. Thermogravimetric analysis of the co-combustion of eucalyptus residues and paper mill sludge. Applied Thermal Engineering, 106, 938–943.
Calia, A., Lettieri, M., Masieri, M., 2016. Durability assessment of nanostructured TiO2 coatings applied on limestones to enhance building surface with self-cleaning ability. Building and Environment, 110, 1–10.
Calia, A., Lettieri, M., Masieri, M., Pal, S., Licciulli, A., Arima, V., 2017. Limestones coated with photocatalytic TiO2 to enhance building surface with self-cleaning and depolluting abilities. Journal of Cleaner Production, 165, 1036–1047.
Cárdenas, C., Tobon, J. I., Garcia, C., Vila, J., 2012. Functionalized building materials: Photocatalytic abatement of NOx by cement pastes blended with TiO2 nanoparticles. Construction and Building Materials, 36, 820–825.
Carmona-Quiroga, P. M., Martínez-Ramírez, S., Viles, H.A., 2018. Efficiency and durability of a self-cleaning coating on concrete and stones under both natural and artificial ageing trials. Applied Surface Science, 433, 312–320.
Chaipanich, A., Chindaprasirt, P., 2015. The properties and durability of autoclaved aerated concrete masonry blocks. Eco-efficient Masonry Bricks and Blocks, 215–230.
Chen, H., Nanayakkara, C. E., Grassian, V. H., 2012. Titanium Dioxide Photocatalysis in Atmospheric Chemistry. Chemical Reviews, 112, 5919–5948.
Chen, R., Li, Y., Xiang, R., Li, S., 2016. Effect of particle size of fly ash on the properties of lightweight insulation materials. Construction and Building Materials, 123, 120–126.
Chen, Y. L., Chang, J. E., Lai, Y. C., Chou, M. I. M., 2017. A comprehensive study on the production of autoclaved aerated concrete: Effects of silica-lime-cement composition and autoclaving conditions. Construction and Building Materials, 153, 622–629.
Chiang, K. Y., Chou, P. H., Hua, C. R., Chien, K. L., Cheeseman, C., 2009. Lightweight bricks manufactured from water treatment sludge and rice husks. Journal of Hazardous Materials, 171, 76–82.
Cui, M., Pan, S., Tang, Z., Chen, X., Qiao, X., Xu, Q., 2017. Physiochemical properties of n-n heterostructured TiO2/Mo-TiO2 composites and their photocatalytic degradation of gaseous toluene. Chemical Speciation & Bioavailability, 29, 60–69.
Debono, O., Hequet, V., Coq, L. L., Locoge, N., Thevenet, F., 2017. VOC ternary mixture effect on ppb level photocatalytic oxidation: Removal kinetic, reaction intermediates and mineralization. Applied Catalysis B: Environmental, 218, 359–369.
Dhada, I., Nagar, P. K., Sharma, M., 2015. Challenges of TiO2 Based Photooxidation of Volatile Organic Compounds: Designing, Coating, and Regenerating Catalyst. Industrial & Engineering Chemistry Research, 54, 5381−5387.
Diebold, U., 2003. The surface science of titanium dioxide. Surface Science Reports, 48, 53–229.
El-Didamony, H., Amer, A. A., Mohammed, M. S., El-Hakim, M. A., 2019. Fabrication and properties of autoclaved aerated concrete containing agriculture and industrial solid wastes. Journal of Building Engineering, 22, 528–538.
Ferrándiz-Mas, V., Bond, T., García-Alcocel, E., Cheeseman, C. R., 2014. Lightweight mortars containing expanded polystyrene and paper sludge ash. Construction and Building Materials, 61, 285–292.
Fujishima, A., Rao, T. N., Tryk, D. A., 2000. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1–21.
Gaya, U. I., Abdullah, A.H., 2008. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 1–12.
Gluth, G. J. G., Lehmann, C., Rübner, K., Kühne, H. C., 2014. Reaction products and strength development of wastepaper sludge ash and the influence of alkalis. Cement and Concrete Composites, 45, 82–88.
Goel, G., & Kalamdhad, A. S., 2017. An investigation on use of paper mill sludge in brick manufacturing. Construction and Building Materials, 148, 334–343.
Guo, M. Z., Ling, T. C., Poon, C.S., 2017. Photocatalytic NOx degradation of concrete surface layers intermixed and spray-coated with nano-TiO2: Influence of experimental factors. Cement and Concrete Composites, 83, 279–289.
Hamad, A. J., 2014. Materials, Production, Properties and Application of Aerated Lightweight Concrete: Review. International Journal of Materials Science and Engineering, 2, 152–157.
Huang, Y., Ho, S. S. H., Lu, Y., Niu, R., Xu, L., Cao, J., Lee, S., 2016. Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. Molecules, 21, 56, 1-20.
Ifang, S., Gallus, M., Liedtke, S., Kurtenbach, R., Wiesen, P., Kleffmann, J., 2014. Standardization methods for testing photo-catalytic air remediation materials: Problems and solution. Atmospheric Environment 91, 154–161.
Jang, H. S., Lim, Y. T., Kang, J. H., So, S. Y., So, H. S., 2018. Influence of calcination and cooling conditions on pozzolanic reactivity of paper mill sludge. Construction and Building Materials, 166, 257–270.
Jeong, J., Sekiguchi, K., Sakamoto, K., 2004. Photochemical and photocatalytic degradation of gaseous toluene using short-wavelength UV irradiation with TiO2 catalyst: comparison of three UV sources. Chemosphere, 57, 663–671.
Ji, J., Xu, Y., Huang, H., He, M., Liu, S., Liu, G., Xie, R., Feng, Q., Shu, T., Zhan, Y., Fang, R., Ye, X., Leung, D. Y. C., 2017. Mesoporous TiO2 under VUV irradiation: Enhanced photocatalytic oxidation for VOCs degradation at room temperature. Chemical Engineering Journal, 327, 490–499.
Jing, Z., Matsuoka, N., Jin, F., Hashida, T., Yamasaki, N., 2007. Municipal incineration bottom ash treatment using hydrothermal solidification. Waste Management, 27, 287–293.
Khodadadian, F., Boer, M. W., Poursaeidesfahani, A., Ommen, J. R., Stankiewicz, A. I., Lakerveld, R., 2018. Design, characterization and model validation of a LED-based photocatalytic reactor for gas phase applications. Chemical Engineering Journal, 333, 456–466.
Kinuthia, J., 2018. Wastepaper sludge ash. Waste and Supplementary Cementitious Materials in Concrete, 289–321.
Kizinievič, O., Kizinievič V., Malaiškienė, J., 2018. Analysis of the effect of paper sludge on the properties, microstructure and frost resistance of clay bricks. Construction and Building Materials, 169, 689–69
Korologos, C. A., Philippopoulos, C. J., Poulopoulos, S. G., 2011. The effect of water presence on the photocatalytic oxidation of benzene, toluene,
ethylbenzene and m-xylene in the gas-phase. Atmospheric Environment, 45, 7089–7095.
Kunchariyakun, K., Asavapisit, S., Sombatsompop, K., 2015. Properties of autoclaved aerated concrete incorporating rice husk ash as partial replacement for fine aggregate. Cement and Concrete Composites, 55, 11–16.
Kunther, W., Ferreiro, S., Skibsted, J., 2017. Influence of the Ca/Si ratio on the compressive strength of cementitious calcium–silicate–hydrate binders. Journal of Materials Chemistry A, 5, 17401–17412.
Kwon, D. W., Seo, P. W., Kim, G. J., Hong, S. C., 2015. Characteristics of the HCHO oxidation reaction over Pt/TiO2 catalysts at room temperature: The effect of relative humidity on catalytic activity. Applied Catalysis B: Environmental, 163, 436-443.
Laufs, S., Burgeth, G., Duttlinger, W., Kurtenbach, R., Maban, M., Thomas, C., Wiesen, P., Kleffmann, J., 2010. Conversion of nitrogen oxides on commercial photocatalytic dispersion paints. Atmospheric Environment, 44, 2341–2349.
Li, X. G., Liu, Z. L., Lv, Y., Cai, L. X., Jiang, D. B., Jiang, W. G., Jian, S., 2018. Utilization of municipal solid waste incineration bottom ash in autoclaved aerated concrete. Construction and Building Materials, 178, 175–182.
Li, Z., Ohnuki, T., Ikeda, K., 2016. Development of paper sludge ash-based geopolymer and application to treatment of hazardous water contaminated with radioisotopes. Materials, 9, 633.
Linsebigler, A. L., Lu, G., Yates, J. T., Jr. 1995. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95, 735–758.
Liu, Y., Leong, B. S., Hu, Z. T., Yang, E. H., 2017. Autoclaved aerated concrete incorporating waste aluminum dust as foaming agent. Construction and Building Materials, 148, 140–147.
Ma, B. G., Cai, L. X., Li, X. J., Jian, S. W., 2016. Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products. Journal of Cleaner Production, 1–10.
Mamaghani, A. H., Haghighat, F., Lee, C. S., 2017. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Applied Catalysis B: Environmental, 203, 247–269.
Mamaghani, A. H., Haghighat, F., Lee, C. S., 2018. Photocatalytic degradation of VOCs on various commercial titanium dioxides: Impact of operating parameters on removal efficiency and by-products generation. Building and Environment, 138, 275–282.
Mamat, N., Kusbiantoro, A., Rahman, N., 2018. Hydrochloric acid based pre-treatment on paper mill sludge ash as an alternative source material for geopolymer. Materials Today: Proceedings, 5, 21825–21831.
Maury-Ramirez, A., Muynck, W. D., Stevens, R., Demeestere, K., Belie, N. D., 2013. Titanium dioxide based strategies to prevent algal fouling on cementitious materials. Cement & Concrete Composites, 36, 93–100.
Maury-Ramirez, A., Nikkanen, J. P., Honkanen, M., Demeestere, K., Levänen, E., Belie, N. D., 2014. TiO2 coatings synthesized by liquid flame spray and low temperature sol–gel technologies on autoclaved aerated concrete for air-purifying purposes. Materials Characterization, 87, 74–85.
Nadesan, M. S., Dinakar, P., 2017. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete. Case Studies in Construction Materials, 7, 336–347.
Pachideh, G., Gholhaki, M., 2019. Effect of pozzolanic materials on mechanical properties and water absorption of autoclaved aerated concrete. Journal of Building Engineering, 26, 100856.
Segui, P., Aubert, J. E., Husson, B., Measson, M., 2012. Characterization of wastepaper sludge ash for its valorization as a component of hydraulic binders. Applied Clay Science, 57, 79–85.
Shah, K. W., Li, W., 2019. A Review on Catalytic Nanomaterials for Volatile Organic Compounds VOC Removal and Their Applications for Healthy Buildings. Nanomaterials, 9, 910, 1-23.
Shayegan, Z., Lee, C. S., Haghighat, F., 2018. TiO2 photocatalyst for removal of volatile organic compounds in gas phase –A review. Chemical Engineering Journal, 334, 2408–2439.
Sherin, K., Saurabh, J. K., 2018. Review of Autoclaved Aerated Concrete Advantages and Disadvantages. Advanced Structures, Materials And Methodology in Civil Engineering, 35–39.
Siauciunas, R., Baltakys, K., 2004. Formation of gyrolite during hydrothermal synthesis in the mixtures of CaO and amorphous SiO2 or quartz. Cement and Concrete Research, 34, 2029–2036.
Singh, S.K., Kulkarni, S., Kumar, V., Vashistha P., 2018. Sustainable utilization of deinking paper mill sludge for the manufacture of building bricks Journal of Cleaner Production, 204, 321–333.
Sleiman, M., Conchon, P., Ferronato, C., Chovelon, J. M., 2009. Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental, 86, 159–165.
Song, Y., Guo, C., Qian, J., Ding, T., 2015a. Effect of the Ca-to-Si ratio on the properties of autoclaved aerated concrete containing coal fly ash from circulating fluidized bed combustion boiler. Construction and Building Materials, 83, 136–142.
Song, Y., Li, B., Yang, E. H., Liu, Y., Ding, T., 2015b. Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cement & Concrete Composites, 56, 51–58.
Tasbihi, M., Calin, L., Šuligoj, A., Fanetti, M., Štangar, U. L., 2017. Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth. Journal of Photochemistry and Photobiology A: Chemistry, 336, 89–97.
Wan, H., Hu, Y., Liu, G., Qu, Y., 2018. Study on the structure and properties of autoclaved aerated concrete produced with the stone-sawing mud. Construction and Building Materials, 184, 20–26.
Wang, C. L., Ni, W., Zhang, S. Q., Wang, S., Gai, G. S., Wang, W. K., 2016. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings. Construction and Building Materials, 104, 109–115.
Weon, S., Choi, W., 2016. TiO2 Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds. Environmental Science & Technology, 50, 2556–2563.
Wong, H. S., Barakat, R., Alhilali, A., Saleh, M., Cheeseman, C. R., 2015. Hydrophobic concrete using waste paper sludge ash. Cement and Concrete Research, 70, 9–20.
Wongkeo, W., Thongsanitgarn, P., Pimraksa, K., Chaipanich, A., 2012. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. Materials and Design, 35, 434–439.
Wu, D., Long, M., Zhou, J., Cai, W., Zhu, X., Chen, C., Wu, Y., 2009. Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach. Surface & Coatings Technology, 203, 3728–3733.
Yang, L., Hakki, A., Zheng, L., Jones, M. R., Wang, F., Macphee, D. E., 2019. Photocatalytic concrete for NOx abatement: Supported TiO2 efficiencies and impacts. Cement and Concrete Research, 116, 57–64.
Yaras, A., 2020. Combined effects of paper mill sludge and carbonation sludge on characteristics of fired clay bricks. Construction and Building Materials, 249, 118722.
Zhang, T., Li, X., Rao, Y., Liu, Y., Zhao, Q., 2020. Removal of formaldehyde in urban office building by the integration of ventilation and photocatalyst-coated window. Sustainable Cities and Society, 55, 102050.
Zhao, Y., Zhang, Y., Chen, T., Chen, Y., Bao, S., 2012. Preparation of high strength autoclaved bricks from hematite tailings. Construction and Building Materials, 28, 450–455.
Zhong, L., Brancho, J. J., Batterman, S., Bartlett, B. M., Godwin, C., 2017. Experimental and modeling study of visible light responsivephotocatalytic oxidation (PCO) materials for toluene degradation. Applied Catalysis B: Environmental, 216, 122–132.
Zouzelka, R., Rathousky, J., 2017. Photocatalytic abatement of NOx pollutants in the air usingcommercial functional coating with porous morphology. Applied Catalysis B: Environmental, 217, 466–476.
行政院環境保護署,環境資源資料庫,重點事業廢棄物–一般污泥之處理方式,網址:https://data.epa.gov.tw/dataset/wr_p_182/resource/192b75 82-7fa7-4858-8c3f-c7e00319145e,網頁擷取日期:2021年4月。
行政院環境保護署環保新聞專區,環保署公告室內空氣品質建議值,行政院環境保護署空保處,2005,網址:https://enews.epa.gov.tw/Page/3B3C62C78849F32F/3ad967fa-7e85-437b-b385-4a1ed6e72ffe,網頁擷取日期:2021年4月。
吳浚瑋,江康鈺,淨水污泥與漿紙污泥煅燒灰共同製備輕質化材料之抗菌特性評估研究,中華民國環境工程學會2019年廢棄物處理技術研討會,台中,2019。
吳冠興,垃圾焚化飛灰與淨水污泥應用高壓蒸氣技術製備為輕質化材料之可行性評估研究,碩士論文,逢甲大學環境工程與科學學系,台中,2015。
林凱隆,鄭敬融,太陽能板廢玻璃燒結作為地磚材料之研究,台灣環境資源永續發展協會2011年區域與環境資源永續發展研討會,台北,2011。
黃淑貞,江康鈺,都市垃圾焚化飛灰熔渣製成玻璃陶瓷之材料特性及其反應動力之研究, 中華民國環境工程學會2008年廢棄物處理技術研討會,台北,2008。
曾凱弘,紡織污泥應用於高壓冷結地磚之研究,碩士論文,國立中興大學土木工程學研究所,台中,2015。
顏慧茹,江康鈺,簡光勵,輕質化材料之製備與特性研究,中華民國環境工程學會2009年廢棄物處理技術研討會,雲林,2009。
劉美芬,回收無害化垃圾焚化飛灰製備一般瓷磚與輕質瓷磚之研究,碩士論文,國立聯合大學環境與安全衛生工程學系碩士班,苗栗,2013。
戴肇寬,林居慶,江康鈺,應用高壓蒸氣技術製備抗菌輕質化材料及其特性評估研究,中華民國環境工程學會2018年廢棄物處理技術研討會,台南,2018。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2021-6-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明