參考文獻 |
1. K. Gurbinder, Solid Oxide Fuel Cell Components: Interfacial Compatibility of SOFC Glass Seals, Springer, New York, pp. 79-161, 2016.
2. W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering: A, Vol. 362, pp. 228-239, 2003.
3. M. Liu, M. E. Lynch, K. Blinn, F. M. Alamgir, and Y. M. Choi, “Rational SOFC Material Design: New Advances and Tools,” Materials Today, Vol. 14, pp. 534-546, 2011.
4. T.-L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, “Material Research for Planar SOFC Stack,” Solid State Ionics, Vol. 148, pp. 513-519, 2002.
5. K. S. Chung, Fabrication and Characterization of Metal-Support for Solid Oxide Fuel Cells (MSOFCs), M.S. Thesis, University of Waterloo, Ontario, Canada, 2016.
6. P. P. Satardekar, Materials Development for the Fabrication of Metal Supported-Solid Oxide Fuel Cells by Co-Sintering, Ph.D. Thesis, University of Trento, Italy, 2014.
7. A. M. Dayaghi, K. J. Kim, S. W. Kim, J. Park, S. J. Kim, B. H. Park, and G. M. Choi, “Stainless Steel-Supported Solid Oxide Fuel Cell with La0.2Sr0.8Ti0.9Ni0.1O3-δ/Yttria-Stabilized Zirconia Composite Anode,” Journal of Power Sources, Vol. 324, pp. 288-293, 2016.
8. V. V. Krishnan, “Recent Developments in Metal‐Supported Solid Oxide Fuel Cells,” WIREs Energy and Environment, Vol. 6, e246, 2017.
9. Y. Larring and M.-L. Fontaine, “Critical Issues of Metal-Supported Fuel Cell,” in Solid Oxide Fuels Cells: Facts and Figures, edited by J. T. S. Irvine, and P. Connor, Springer, London, pp. 71-93, 2013.
10. M. C. Tucker, “Progress in Metal-Supported Solid Oxide Fuel Cells: A Review,” Journal of Power Sources, Vol. 195, pp. 4570-4582, 2010.
11. S. Le, Z. Shen, X. Zhu, X. Zhou, Y. Yan, K. Sun, N. Zhang, Y. Yuan, and Y. Mao, “Effective Ag-CuO Sealant for Planar Solid Oxide Fuel Cells,” Journal of Alloys and Compounds, Vol. 496, pp. 96-99, 2010.
12. M. Singh, T. P. Shpargel, and R. Asthana, “Brazing of Zttria-Stabilized Zirconia (YSZ) to Stainless Steel,” Journal of Materials Science, Vol. 43, pp. 23-32, 2008.
13. J. Y. Kim, J. S. Hardy, and S. Weil, “Dual-Atmosphere Tolerance of Ag-CuO-Based Air Braze,” International Journal of Hydrogen Energy, Vol. 32, pp. 3655-3663, 2007.
14. K.-L. Lin, M. Singh, R. Asthana, and C.-H. Lin, “Interfacial and Mechanical Characterization of Yttria-Stabilized Zirconia (YSZ) to Stainless Steel Joints Fabricated Using Ag-Cu-Ti Interlayers,” Ceramics International, Vol. 40, pp. 2063-2071, 2014.
15. L.-W. Huang, Y.-Y. Wu, and R.-K. Shiue, “The Effect of Oxygen Pressure in Active Brazing 8YSZ and Crofer 22 H Alloy,” Journal of Materials Research and Technology, Vol. 10, pp. 1382-1388, 2021.
16. X. Si, J. Cao, I. Ritucci, B. Talic, J. Feng, and R. Kiebach, “Enhancing the Long-Term Stability of Ag Based Seals for Solid Oxide Fuel/electrolysis Applications by Simple Interconnect Aluminization,” International Journal of Hydrogen Energy, Vol. 44, pp. 3063-3074, 2019.
17. X. Si, J. Cao, B. Talic, I. Ritucci, C. Li, J. Qi, J. Feng, and R. Kiebach, “A Novel Ag Based Sealant for Solid Oxide Cells with a Fully Tunable Thermal Expansion,” Journal of Alloys and Compounds, Vol. 831, 154608, 2020.
18. Q. Zhou, T. R. Bieler, and J. D. Nicholas, “Transient Porous Nickel Interlayers for Improved Silver-Based Solid Oxide Fuel Cell Brazes,’’ Journal of Acta Materialia, Vol. 148, pp. 156-162, 2018.
19. T. Bause, J. Malzbender, M. Pausch, T. Beck, and L. Singheiser, “Damage and Failure of Silver Based Ceramic/Metal Joints for SOFC Stacks,’’ Journal of Fuel Cells, Vol. 13, pp. 578-583, 2013.
20. N. E. Dowling, S. L. Kampe, and M. V. Kral, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 5th Ed., Pearson Education, Harlow, UK, pp. 777-840, 2020.
21. Y.-C. Zhang, W. Jiang, S.-T. Tu, C.-L. Wang, and C. Cheng, “Effect of Operating Temperature on Creep and Damage in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell,” International Journal of Hydrogen Energy, Vol. 43, pp. 4492-4504, 2018.
22. S. J. Kim, M.-B. Choi, M. Park, H. Kim, J.-W. Son, J.-H. Lee, B.-K. Kim, H.-W. Lee, S.-G. Kim, and K. J. Yoon, “Acceleration Tests: Degradation of Anode-Supported Planar Solid Oxide Fuel Cells at Elevated Operating Temperatures,” Journal of Power Sources, Vol. 360, pp. 284-293, 2017.
23. Y.-S. Chou, J. W. Stevenson, and J.-P. Choi, “Long-Term Evaluation of Solid Oxide Fuel Cell Candidate Materials in a 3-Cell Generic Short Stack Fixture, Part II: Sealing Glass Stability, Microstructure and Interfacial Reactions,’’ Journal of Power Sources, Vol. 250, pp. 166-173, 2014.
24. D. Ciria, M. Jiménez-Melendo, V. Aubin, and G. Dezanneau, “Creep Properties of High Dense La9.33Si6O26 Electrolyte for SOFCs,’’ Journal of the European Ceramic Society, Vol. 40, pp. 1989-1998, 2020.
25. J. Laurencin, G. Delette, F. Usseglio-Viretta, and S. Di Iorio, “Creep Behaviour of Porous SOFC Electrodes: Measurement and Application to Ni-8YSZ Cermets,’’ Journal of the European Ceramic Society, Vol. 31, pp. 1741-1752, 2011.
26. H. L. Frandsen, M. Makowska, F. Greco, C. Chatzichristodoulou, D. W. Ni, D. J. Curran, M. Strobl, L. T. Kuhn, and P. V. Hendriksen, “Accelerated Creep in Solid Oxide Fuel Cell Anode Supports During Reduction,” Journal of Power Sources, Vol. 323, pp. 78-89, 2016.
27. F. Greco, H. L. Frandsen, A. Nakajo, M. F. Madsen, and J. Van herlea, “Modelling the Impact of Creep on the Probability of Failure of a Solid Oxide Fuel Cell Stack,’’ Journal of the European Ceramic Society, Vol. 34, pp. 2695-2704, 2014.
28. J. Wei and J. Malzbender, “Steady State Creep of Ni-8YSZ Substrates for Application in Solid Oxide Fuel and Electrolysis Cells,” Journal of Power Sources, Vol. 360, pp. 1-10, 2017.
29. A. Nakajo, J. Kuebler, A. Faes, U. F. Vogt, H. J. Schindler, L.-K. Chiang, S. Modena, J. Van herle, and T. Hocker, “Compilation of Mechanical Properties for the Structural Analysis of Solid Oxide Fuel Cell Stacks. Constitutive Materials of Anode-Supported Cells,” Ceramics International, Vol. 38, pp. 3907-3927, 2012.
30. C.-K. Lin, K.-L. Lin, J.-H. Yeh, S.-H. Wu, and R.-Y. Lee, “Creep Rupture of the Joint of a Solid Oxide Fuel Cell Glass-Ceramic Sealant with Metallic Interconnect,’’ Journal of Power Sources, Vol. 245, pp. 787-795, 2014.
31. C.-K. Lin, T.-W. Lin, S.-H. Wu, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Creep Rupture of the Joint Between a Glass-Ceramic Sealant and Lanthanum Strontium Manganite-Coated Ferritic Stainless Steel Interconnect for Solid Oxide Fuel Cells,’’ Journal of the European Ceramic Society, Vol. 38, pp. 2417-2429, 2018.
32. C. Y. S. Chang, W. C. J. Wei, and C. H. Hsueh, “Viscosity of Ba-B-Si-Al-O Glass Measured by Indentation Creep Test at Operating Temperature of IT-SOFC,’’ Journal of Non-Crystalline Solids, Vol. 357, pp. 1414-1419, 2011.
33. Y. Wang, W. Jiang, M. Song, Y. Zhang, and S.-T. Tu, “Effect of Frame Material on the Creep of Solid Oxide Fuel Cell,’’ International Journal of Hydrogen Energy, Vol. 44, pp. 20323-20335, 2019.
34. Y.-C. Zhang, H.-Q. Zhao, W. Jiang, S.-T. Tu, X.-C. Zhang, and R.-Z. Wang, “Time Dependent Failure Probability Estimation of the Solid Oxide Fuel Cell by a Creep-Damage Related Weibull Distribution Model,’’ International Journal of Hydrogen Energy, Vol. 43, pp. 13532-13542, 2018.
35. J. Milhans, M. Khaleel, X. Sun, M. Tehrani, M. Al-Haik, and H.Garmestani, “Creep Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal G18,” Journal of Power Sources, Vol. 195, pp. 3631-3635, 2010.
36. J. Milhans, D. S. Li, M. Khaleel, X. Sun, M. Al-Haik, A. Harris, and H. Garmestani, “Mechanical Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal at High Temperatures,” Journal of Power Sources, Vol. 196, pp. 5599-5603, 2011.
37. C.-K. Lin, K.-L. Lin, J.-H. Yeh, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Aging Effects on High-Temperature Creep Properties of a Solid Oxide Fuel Cell Glass-Ceramic Sealant,” Journal of Power Sources, Vol. 241, pp. 12-19, 2013.
38. J. Malzbender, Y. Zhao, and T. Beck, “Fracture and Creep of Glass-Ceramic Solid Oxide Fuel Cell Sealant Materials,” Journal of Power Sources, Vol. 246, pp. 574-580, 2014.
39. E. V. Stephens, J. S. Vetrano, B. J. Koeppel, Y. Chou, X. Sun, and M. A. Khaleel, “Experimental Characterization of Glass-Ceramic Seal Properties and Their Constitutive Implementation in Solid Oxide Fuel Cell Stack Models,” Journal of Power Sources, Vol. 193, pp. 625-631, 2009.
40. H.-L. Hsu, Environmental Effects on the Creep Properties of Joints in Solid Oxide Fuel Cell, M.S. Thesis, Tao-Yuan, National Central University, 2015.
41. W. Jiang, Y. Zhang, Y. Luo, J. M. Gong, and S. T. Tu, “Creep Analysis of Solid Oxide Fuel Cell with Bonded Compliant Seal Design,” Journal of Power Sources, Vol. 243, pp. 913-918, 2013.
42. Y.-C. Zhang, W. Jiang, S.-T. Tu, and J.-F. Wen, “Simulation of Creep and Damage in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell,’’ International Journal of Hydrogen Energy, Vol. 39, pp. 17941-17951, 2014.
43. Y.-C. Zhang, W. Jiang, S.-T. Tu, J.-F. Wen, and W. Woo, “Using Short-Time Creep Relaxation Effect to Decrease the Residual Stress in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell - A Finite Element Simulation,” Journal of Power Sources, Vol. 255, pp. 108-115, 2014.
44. L. Esposito, D. N. Boccaccini, G. P. Pucillo, and H. L. Frandsen, “Secondary Creep of Porous Metal Supports for Solid Oxide Fuel Cells by a CDM Approach,” Materials Science and Engineering: A, Vol. 691, pp. 155-161, 2017.
45. Y.-C. Zhang, X.-T. Yu, W. Jiang, S.-T. Tu, X.-C. Zhang, and Y.-J. Ye, “Creep Fracture Behavior of the Crofer 22 APU for the Interconnect of Solid Oxide Fuel Cell Under Different Temperatures,’’ International Journal of Hydrogen Energy, Vol. 45, pp. 4829-4840, 2020.
46. J. Froitzheim, G. H. Meier, L. Niewolak, P. J. Ennis, H. Hattendorf, L. Singheiser, and W. J. Quadakkersa, “Development of High Strength Ferritic Steel for Interconnect Application in SOFCs,” Journal of Power Sources, Vol. 178, pp. 163-173, 2008.
47. B. Kuhn, C. A. Jimenez, L. Niewolak, T. Hüttel, T. Beck, H. Hattendorf, L. Singheiser, and W. J. Quadakkers, “Effect of Laves Phase Strengthening on The Mechanical Properties of High Cr Ferritic Steels for Solid Oxide Fuel Cell Interconnect Application,” Materials Science and Engineering: A, Vol. 528, pp. 5888-5899, 2011.
48. Y.-T. Chiu, C.-K. Lin, and J.-C. Wu, “High-Temperature Tensile and Creep Properties of a Ferritic Stainless Steel for Interconnect in Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 196, pp. 2005-2012, 2011.
49. Y.-T. Chiu and C.-K. Lin, “Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 198, pp. 149-157, 2012.
50. D. N. Boccaccini, H. L. Frandsen, B. R. Sudireddy, P. Blennow, Å. H. Persson, K. Kwok, and P. V. Hendriksen, “Creep Behaviour of Porous Metal Supports for Solid Oxide Fuel Cells,’’ International Journal of Hydrogen Energy, Vol. 39, pp. 21569-21580, 2014.
51. Y.-T. Chiu, Creep and Thermo-Mechanical Fatigue Properties of Ferritic Stainless Steels for Use in Solid Oxide Fuel Cell Interconnect, Ph.D. Thesis, Tao-Yuan, National Central University, 2012.
52. L.-W. Huang, C.-K. Liu, Y.-N. Cheng, and R.-Y. Lee, Brazing Material Composition and Manufacturing Method Thereof, ROC Patent No. I634220, 2018.
53. Y.-W. Tseng, Mechanical Properties and Stress Analysis for the Joint of Metallic Interconnect and Braze Sealant in Solid Oxide Fuel, M.S. Thesis, National Central University, Tao-Yuan, 2020.
54. S. W. Sofie, P. Gannon, and V. Gorokhovsky, “Silver-Chromium Oxide Interactions in SOFC Environments,” Journal of Power Sources, Vol. 191, pp. 465-472, 2009.
55. H.-Y. Chiang, Chemical Reaction Between Fe-Si-Cr Alloy Powder and Inner Electrode Ag During Co-Firing for Multilayer Alloy Power Inductors, M.S. Thesis, National Cheng Kung University, Tainan, 2018.
56. B. M. Abu-Zied and T. T. Ali, “Fabrication, Characterization, and Catalytic Activity Measurements of Nano-Crystalline Ag-Cr-O Catalysts,” Journal of Applied Surface Science, Vol. 457, pp. 1126-1135, 2018.
57. B. M. Abu-Zied, “Structural and Catalytic Activity Studies of Silver/Chromia Catalysts,” Journal of Applied Catalysis A: General, Vol. 198, pp. 139-153, 2000.
58. F. Kundie, C. H. Azhari, A. Muchtar, and Z. A. Ahmad, “Effects of Filler Size on the Mechanical Properties of Polymer-Filled Dental Composites: A Review of Recent Developments,” Journal of Physical Science, Vol. 29, pp. 141-165, 2018.
59. J. J. Kruzic, R. K. Nalla, J. H. Kinney, and R.O. Ritchie, “Crack blunting, Crack bridging and Resistance-Curve Fracture Mechanics in Dentin: Effect of Hydration,” Journal of Biomaterials, Vol. 24, pp. 5209-5221, 2003.
60. Y. Shao, H.-P. Zhao, X.-Q. Feng, and H. Gao, “Discontinuous Crack-Bridging Model for Fracture Toughness Analysis of Nacre,” Journal of the Mechanics and Physics of Solids, Vol. 60, pp. 1400-1419, 2012.
61. J. A. De Souza, S. Goutianos, M. Skovgaard, and B. F. Sørensen, “Fracture Resistance Curves and Toughening Mechanisms in Polymer Based Dental Composites,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, pp. 558-571, 2011.
62. V. Tvergaard, “On Fatigue Crack Growth in Ductile Materials by Crack-Tip Blunting,” Journal of the Mechanics and Physics of Solids, Vol. 52, pp. 2149-2166, 2004.
63. D. J. Nicholls, “The Relation Between Crack Blunting and Fatigue Crack Growth Rates,” International Journal of Fatigue, Vol. 17, pp. 449, 1995.
64. V. P. Rajan and W. A. Curtin, “Crack Tip Blunting and Cleavage Under Dynamic Conditions,” Journal of the Mechanics and Physics of Solids, Vol. 90, pp. 18-28, 2016. |