博碩士論文 107326024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.15.34.244
姓名 陳伊伶(Yi-Ling Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以二氧化鈦/單壁奈米碳管/玻璃碳電極進行 多成份水樣之COD快速分析
(Rapid Determination of Chemical Oxygen Demand in Multi-Compounds Water by Titanium Dioxide/Single-Walled Carbon Nanotubes/Glassy Carbon Electrode)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-1以後開放)
摘要(中) 化學需氧量(COD)為環境水體有機污染物含量及水質監測的重要指標之一。傳統COD分析方法仍存在許多缺點,例如:分析時間長、氧化能力受限、高毒性試劑的二次污染等。而電化學方法不僅具有快速分析、高靈敏度、環境友善等優點,還可應用於現場監測及分析,使其逐漸受到關注。
本研究透過溶膠-凝膠法製備二氧化鈦/單壁奈米碳管複合材料並用於修飾電極,以線性掃描伏安法(LSV)在最佳掃描條件(電解質為0.1 M氯化鈉緩衝溶液、掃描速度為0.1 V s–1)下進行水樣之COD分析,包括模擬水樣及真實水樣。其中,模擬水樣分為單一水樣及多成分水樣,單一水樣由鄰苯二甲酸氫鉀、葡萄糖、水楊酸、對-硝基苯酚、甘胺酸、菸鹼酸、四甲基氫氧化銨等有機物配製。多成分水樣則以鄰苯二甲酸氫鉀、水楊酸、對-硝基苯酚三個有機物組合作為分析代表,在不同理論需氧量比例的情況下,探討有機物在電極上的競爭和協同作用。結果顯示,兩種水樣分析所得的峰值電流與理論需氧量皆呈現正相關。真實水樣的分析中,將修飾電極用於測定平鎮工業區污水廠之進流水及放流水,發現LSV與COD標準方法具有相似的趨勢,LSV所建立的擬合方程對於工業廢水的COD量測是可行的。對於修飾電極的再現性及穩定性分析,相對標準偏差分別為4.87%及6.34%。證實了修飾電極在快速量測COD方面具有良好的潛力。
摘要(英) Chemical oxygen demand (COD) is one of the important indicators to understand the pollution by organic compounds and is usually monitored. The traditional COD analysis methods have disadvantages, such as long-term analysis time, limited oxidation capacity, and secondary pollution of highly toxic reagents. The electrochemical method not only has the advantages of rapid analysis, high sensitivity and environmental friendliness, but also can be applied to on-site monitoring and analysis, so that it has broad prospect.
In this study, the TiO2/single-walled carbon nanotubes (SWCNT) composite was prepared by sol-gel method and used to modify glassy carbon electrode (GCE). The COD analysis of synthetic water and real water was performed by linear sweep voltammetry (LSV) under the optimal scanning conditions (the electrolyte was 0.1 M NaCl and the scanning rate is 0.1 V s–1). The synthetic water were divided into single-compound and multi-compounds systems. The single-compound synthetic water were made of potassium hydrogen phthalate (KHP), glucose, salicylic acid (SA), 4 nitrophenol (4-NP), glycine, nicotinic acid (NA), and tetramethylammonium hydroxide (TMAH). For the multi-compounds synthetic water, KHP, SA, and 4-NP were selected, and the competition and synergetic effects between organic compounds on electrodes were discussed. The results show that peak current obtained from both single-compound and multi-compounds synthetic water were positively correlated with ThOD. For real water samples, the prepared TiO2/SWCNT/GCE was used to determine COD in the influent and effluent obtained from the wastewater treatment plant of Pingzhen Industrial Park. It was found that the LSV and COD standard methods have similar tendency, and the fitting equation established by LSV was feasible for COD measurement of industrial wastewater. For the reproducibility and long-term stability analysis of the TiO2/SWCNT/GCE, the RSD were 4.87% and 6.34%, respectively. Therefore, it is confirmed that the TiO2/SWCNT/GCE has great potential in rapid determination of COD.
關鍵字(中) ★ 化學需氧量
★ 線性掃描伏安法
★ 二氧化鈦
★ 單壁奈米碳管
關鍵字(英) ★ chemical oxygen demand (COD)
★ linear sweep voltammetry (LSV)
★ titanium dioxide (TiO2)
★ single-walled carbon nanotube (SWCNT)
論文目次 摘要 i
Abstract ii
致謝 iv
Contents v
List of Figures viii
List of Tables xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives 3
Chapter 2 Literature Reviews 6
2.1 Detection method of organic compounds 6
2.1.1 Chemical oxygen demand (COD) 7
2.1.2 Analyze chemical oxygen demand by traditional methods 7
2.1.3 Analyze chemical oxygen demand by electrochemical method 9
2.1.4 Theoretical oxygen demand (ThOD) 11
2.2 Electrochemical technology 12
2.2.1 Electrochemical reaction and principle 12
2.2.2 Electrochemical system 14
2.3.3 Voltammetric reactions and principles 16
2.2.4 Electrochemical impedance spectroscopy (EIS) 23
2.3 Electrode materials for detecting of COD 27
2.3.1 Carbon nanotube (CNT) 27
2.3.2 Titanium dioxide (TiO2) 33
2.3.3 Synergy of titanium dioxide and single-walled carbon nanotubes 41
Chapter 3 Materials and Methods 44
3.1 Instrumentation 44
3.2 Materials and Chemicals 45
3.2.1 TiO2/SWCNT suspension 45
3.2.2 Electrolyte 46
3.2.3 Analyte for voltammetric analysis 46
3.3 Modification of working electrode (TiO2/SWCNT/GCE) 47
3.3.1 Functionalization of SWCNT 47
3.3.2 Synthesis of TiO2/SWCNT composite 48
3.3.3 Synthesis of TiO2/SWCNT /GCE 49
3.4 Characterization analysis of the TiO2/SWCNT composite 50
3.5 Electrochemical performance analysis 50
3.5.1 Electrochemical behavior of modified electrode 51
3.5.2 COD detection of sample water 52
Chapter 4 Results and Discussion 55
4.1 Selection of the best modified electrode material 56
4.2 Characterization of modified electrode materials 61
4.2.1 Morphology and structure analysis (TEM) 61
4.2.2 Crystal phase analysis (XRD) 64
4.3 Electrochemical performance analysis of the modified electrode 66
4.3.1 Electrochemical Surface Area (ECSA) 66
4.3.2 Kinetics of modified electrode 69
4.3.3 Electrochemical impedance spectroscopy (EIS) 72
4.4 Optimization of scanning conditions of LSV 74
4.4.1 Selection of optimum supporting electrolyte 74
4.4.2 Optimization of scan parameters 78
4.5 COD analysis of synthetic water sample 80
4.5.1 Analysis of single-compound synthetic water 80
4.5.2 Analysis of multi-compounds synthetic water 104
4.6 COD analysis of real water samples 119
4.6.1 LSV of influent wastewater 119
4.6.2 LSV of effluent wastewater 125
4.7 Reproducibility, Repeatability and Stability of modified electrode 130
4.7.1 Reproducibility 130
4.7.2 Repeatability and long-term stability 131
Chapter 5 Conclusions and Suggestions 132
5.1 Conclusions 132
5.2 Suggestions 134
Reference 135
參考文獻 Ahammad, A., Lee, J.-J., and Rahman, M.A.,"Electrochemical sensors based on carbon nanotubes", Sensors and Actuators B: Chemical, 9, 2289-2319(2009).
Ai, S., Li, J., Yang, Y., Gao, M., Pan, Z., and Jin, L.,"Study on photocatalytic oxidation for determination of chemical oxygen demand using a nano-TiO2–K2Cr2O7 system", Analytica chimica acta, 509, 237-241(2004).
Aqel, A., Abou El-Nour, K.M.M., Ammar, R.A.A., and Al-Warthan, A.,"Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation", Arabian Journal of Chemistry, 5, 1-23(2012).
Arvinte, A., Mahosenaho, M., Pinteala, M., Sesay, A.M., and Virtanen, V.,"Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes", Microchimica Acta, 174, 337-343(2011).
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.,"Visible-light photocatalysis in nitrogen-doped titanium oxides", Science, 293, 269-271(2001).
Asmatulu, R.,"Nanocoatings for corrosion protection of aerospace alloys", Corrosion Protection and Control Using Nanomaterials, Elsevier, (2012).
Badr, I.H.A., Hassan, H.H., Hamed, E., and Abdel-Aziz, A.M.,"Sensitive and green method for determination of chemical oxygen demand using a nano-copper based electrochemical sensor", Electroanalysis, 29, 2401-2409(2017).
Bagheri, S., Shameli, K., and Abd Hamid, S.B.,"Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method", Journal of Chemistry, 2013, 5(2013).
Bai, J., and Zhou, B.,"Titanium dioxide nanomaterials for sensor applications", Chemical Reviews, 114, 10131-10176(2014).
Baker, J.R., Milke, M.W., and Mihelcic, J.R.,"Relationship between chemical and theoretical oxygen demand for specific classes of organic chemicals", Water Research, 33, 327-334(1999).
Banerjee, S., and Wong, S.S.,"Synthesis and characterization of carbon nanotube-nanocrystal heterostructures", Nano Letters, 2, 195-200(2002).
Bard, A.J., and Faulkner, L.R.,"Electrochemical methods: fundamentals and applications", Springer, New York(2001).
Baro, M., Hussain, A.A., and Pal, A.R.,"Enhanced light sensing performance of a hybrid device developed using as-grown vertically aligned multiwalled carbon nanotubes on TCO substrates", Rsc Advances, 4, 46970-46975(2014).
Bilgil, H.,"New grey forecasting model with its application and computer code", AIMS Mathematics, 6, 1497-1514(2021).
Brown, A.P., and Anson, F.C.,"Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface", Analytical Chemistry,, 49, 1589-1595(1977).
Capelle, A., and Vooys, F.d.,"Activated carbon. a fascinating material", Netherlands(1983).
Carp, O., Huisman, C.L., and Reller, A.,"Photoinduced reactivity of titanium dioxide", Progress in Solid State Chemistry, 32, 33-177(2004).
Cesarino, I., Cesarino, V., Moraes, F.C., Ferreira, T.C.R., Lanza, M.R.V., Mascaro, L.H., and Machado, S.A.S.,"Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes", Materials Chemistry and Physics, 141, 304-309(2013).
Chang, C.-C.,"Determination of Cd(II) by by square wave anodic stripping voltammetry using graphene oxide/single-walled carbon nanotubes/Bi2Te3 modified glassy carbon electrode", Master′s thesis, National Central University, Taoyuan(2019).
Chang, S.T., Lin, K.Y.A., and Lu, C.S.,"Efficient adsorptive removal of Tetramethylammonium hydroxide (TMAH) from water using graphene oxide", Separation and Purification Technology, 133, 99-107(2014).
Chang, S.T., Lu, C.Y., and Lin, K.Y.A.,"Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon", Applied Surface Science, 326, 187-194(2015).
Chen, H.C., Zhang, J.L., Chen, Q.P., Li, J.H., Li, D., Dong, C.P., Liu, Y.B., Zhou, B.X., Shang, S.C., and Cai, W.M.,"Assessment of a COD analytical method based on the photoelectrocatalysis of a TiO2 nanotube array sensor", Analytical Methods, 4, 1790-1796(2012).
Chen, J.S., Zhang, J.D., Xian, Y.Z., Ying, X.Y., Liu, M.C., and Jin, L.T.,"Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research", Water Research, 39, 1340-1346(2005).
Dayakar, T., Rao, K.V., Vinodkumar, M., Bikshalu, K., Chakradhar, B., and Rao, K.R.,"Novel synthesis and characterization of Ag@TiO2 core shell nanostructure for non-enzymatic glucose sensor", Applied Surface Science, 435, 216-224(2018).
Detpisuttitham, W., Phanthong, C., Ngamchana, S., Rijiravanich, P., and Surareungchai, W.,"Electrochemical detection of salicylic acid in pickled fruit/vegetable and juice", Journal of Analysis and Testing, 4, 291–297(2020).
Dhorabe, P.T., Lataye, D.H., and Ingole, R.S.,"Removal of 4-nitrophenol from aqueous solution by adsorption onto activated carbon prepared from Acacia glauca sawdust", Water Science and Technology, 73, 955-966(2016).
Diantoro, M., Kusumaatmaja, A., and Triyana, K.,"Study on photocatalytic properties of TiO2 nanoparticle in various pH condition", Journal of Physics: Conference Series, 1011, 012069(2018).
Duong, T.T., Nguyen, Q.D., Hong, S.K., Kim, D., Yoon, S.G., and Pham, T.H.,"Enhanced photoelectrochemical activity of the TiO2/ITO nanocomposites grown onto single-walled carbon nanotubes at a low temperature by nanocluster deposition", Advanced Materials, 23, 5557-+(2011).
Eaton, A., Clesceri, L., Rice, E., Greenberg, A., and Franson, M.,"Standard methods for the examination of water and wastewater", American Public Health Association (APHA), Washington, DC(1995).
Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T., and Dempsey, J.L.,"A practical beginner′s guide to cyclic voltammetry", Journal of Chemical Education, 95, 197-206(2018).
Enache, T.A., and Oliveira-Brett, A.M.,"Phenol and para-substituted phenols electrochemical oxidation pathways", Journal of Electroanalytical Chemistry, 655, 9-16(2011).
Finkelstein, M., Petersen, R.C., and Ross, S.D.,"The electrochemical degradation of quaternary ammonium salts1", Journal of the American Chemical Society, 81, 2361-2364(1959).
Gao, G., Jeevarajan, J.A., and Kispert, L.D.,"Cyclic voltammetry and spectroelectrochemical studies of cation radical and dication adsorption behavior for 7,7′-diphenyl-7,7′-diapocarotene", Journal of Electroanalytical Chemistry, 411, 51-56(1996).
Gao, T.Y., Sun, G.C., Cheng, F.Y., Dai, K., Chen, H., Deng, K.J., and Huang, Q.Y.,"Enhanced visible-light-driven photoactivities of single-walled carbon nanotubes coated with N doped TiO2 nanoparticles", Rsc Advances, 5, 28973-28979(2015).
Gooding, J.J.,"Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing", Electrochimica Acta, 50, 3049-3060(2005).
Guo, X.L., Li, D., Wan, J.F., and Yu, X.J.,"Preparation and electrochemical property of TiO2/Nano-graphite composite anode for electro-catalytic degradation of ceftriaxone sodium", Electrochimica Acta, 180, 957-964(2015).
Hamzaçebi, C.,"Primary energy sources planning based on demand forecasting: The case of Turkey", Journal of Energy in Southern Africa, 27, 1-10(2016).
Harvey, D.,"Voltammetric and amperometric methods", Analytical Chemistry 2.1, DePauw University, U.S.A.(2019).
Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K., Toukai, N., Kominami, H., and Kera, Y.,"Photocatalytic oxidation of nitrogen oxide over titania-zeolite composite catalyst to remove nitrogen oxides in the atmosphere", Applied Catalysis B-Environmental, 30, 429-436(2001).
Hassan, H.H., Badr, I.H.A., Abdel-Fatah, H.T.M., Elfeky, E.M.S., and Abdel-Aziz, A.M.,"Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film", Arabian Journal of Chemistry, 11, 171-180(2018).
Heras, A., Colina, A., Lopez-Palacios, J., Ayala, P., Sainio, J., Ruiz, V., and Kauppinen, E.I.,"Electrochemical purification of carbon nanotube electrodes", Electrochemistry Communications, 11, 1535-1538(2009).
Hou, P.-X., Liu, C., and Cheng, H.-M.,"Purification of carbon nanotubes", Carbon, 46, 2003-2025(2008).
Huang, X.W., Zhu, Y.Y., Yang, W.Q., Jiang, A.H., Jin, X.Q., Zhang, Y.R., Yan, L., Zhang, G.S., and Liu, Z.J.,"A self-supported Cuo/Cu nanowire electrode as highly efficient sensor for COD measurement", Molecules, 24, 13(2019).
Hur, J., Lee, B.M., Lee, T.H., and Park, D.H.,"Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra", Sensors, 10, 2460-2471(2010).
Iijima, S.,"Helical microtubules of graphitic carbon", Nature Materials, 354, 56-58(1991).
Ji, H.X., Zhao, X., Qiao, Z.H., Jung, J., Zhu, Y.W., Lu, Y.L., Zhang, L.L., MacDonald, A.H., and Ruoff, R.S.,"Capacitance of carbon-based electrical double-layer capacitors", Nature Communications, 5, 7(2014).
Jiang, R., Chai, X.S., Zhang, C., and Tang, H.L.,"A dual-wavelength spectroscopic method for the low chemical oxygen demand determination", Spectroscopy and Spectral Analysis, 31, 2007-2010(2011).
Jin, Q.L., Fujishima, M., and Tada, H.,"Visible-light-active iron oxide-modified anatase titanium(iv) dioxide", Journal of Physical Chemistry C, 115, 6478-6483(2011).
Jung, K.H., Hong, J.S., Vittal, R., and Kim, K.J.,"Enhanced photocurrent of dye-sensitized solar cells by modification of TiO2 with carbon nanotubes", Chemistry Letters, 864-865(2002).
Kabir, H., Zhu, H.Y., Lopez, R., Nicholas, N.W., McLlroy, D.N., Echeverria, E., May, J., and Cheng, I.F.,"Electrochemical determination of chemical oxygen demand on functionalized pseudo-graphite electrode", Journal of Electroanalytical Chemistry, 851, 8(2019).
Kruusenberg, I., Alexeyeva, N., Tammeveski, K., Kozlova, J., Matisen, L., Sammelselg, V., Solla-Gullon, J., and Feliu, J.M.,"Effect of purification of carbon nanotubes on their electrocatalytic properties for oxygen reduction in acid solution", Carbon, 49, 4031-4039(2011).
Kumaravel, A., and Chandrasekaran, M.,"A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion", Journal of Electroanalytical Chemistry, 650, 163-170(2011).
Lambert, J.M., Ajayan, P.M., Bernier, P., Planeix, J.M., Brotons, V., Coq, B., and Castaing, J.,"Improving conditions towards isolating single-shell carbon nanotubes ", Chemical Physics Letters,, 226, 364-371(1994).
Laviron, E., Roullier, L., and Degrand, C.,"A multilayer model for the study of space distributed redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction", Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 112, 11-23(1980).
Lee, K.H., Ishikawa, T., McNiven, S.J., Nomura, Y., Hiratsuka, A., Sasaki, S., Arikawa, Y., and Karube, I.,"Evaluation of chemical oxygen demand (COD) based on coulometric determination of electrochemical oxygen demand (EOD) using a surface oxidized copper electrode", Analytica Chimica Acta, 398, 161-171(1999).
Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W., and Maier, W.F.,"Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst", Applied Catalysis B-Environmental, 32, 215-227(2001).
Levin, E.M., and McMurdie, H.F.,"Phase diagrams for ceramists", The American Ceramic Society Inc., United States(1975).
Li, D.,"TiO₂ Photocatalytic Degradation of Waste Activated Sludge and Potassium Hydrogen Phthalate in Wastewater for Enhancing Biogas Production", University of Tsukuba, Japan(2013).
Li, J., Tong, Y., Guan, L., Wu, S., and Li, D.,"Optimization of COD determination by UV–vis spectroscopy using PLS chemometrics algorithms", 174, 591-599(2018).
Li, J.M., Meng, X.G., Hu, C.W., and Du, J.,"Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan", Bioresource Technology, 100, 1168-1173(2009).
Li, L., Zhang, S., Li, G., and Zhao, H.J.A.c.a.,"Determination of chemical oxygen demand of nitrogenous organic compounds in wastewater using synergetic photoelectrocatalytic oxidation effect at TiO2 nanostructured electrode", 754, 47-53(2012).
Li, L.H., and Zhang, W.D.,"Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing", Microchimica Acta, 163, 305-311(2008).
Li, S.X., Zheng, F.Y., Cai, W.L., Han, A.Q., and Xie, Y.K.,"Surface modification of nanometer size TiO2 with salicylic acid for photocatalytic degradation of 4-nitrophenol", Journal of Hazardous Materials, 135, 431-436(2006).
Li, X.L., Lin, D.H., Lu, K.C., Chen, X., Yin, S.Y., Li, Y., Zhang, Z.Y., Tang, M.H., and Chen, G.S.,"Graphene oxide orientated by a magnetic field and application in sensitive detection of chemical oxygen demand", Analytica Chimica Acta, 1122, 31-38(2020).
Liang, Y., Sun, S., Deng, T., Ding, H., Chen, W., and Chen, Y.,"The preparation of TiO2 film by the sol-gel method and evaluation of its self-cleaning property", 11, 450(2018).
Liu, L.Q., Deng, G.Z., and Shi, X.Y.,"Adsorption characteristics and mechanism of p-nitrophenol by pine sawdust biochar samples produced at different pyrolysis temperatures", Scientific Reports, 10, 11(2020).
Luo, H.X., Shi, Z.J., Li, N.Q., Gu, Z.N., and Zhuang, Q.K.,"Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode", Analytical Chemistry, 73, 915-920(2001).
Ma, Y.J., Tie, Z.Z., Zhou, M., Wang, N., Cao, X.J., and Xie, Y.,"Accurate determination of low-level chemical oxygen demand using a multistep chemical oxidation digestion process for treating drinking water samples", Analytical Methods, 8, 3839-3846(2016).
Manna, K., and Srivastava, S.K.,"Contrasting role of defect-induced carbon nanotubes in electromagnetic interference shielding", Journal of Physical Chemistry C, 122, 19913-19920(2018).
Meekins, B.H., and Kamat, P.V.,"Got TiO2 nanotubes lithium ion intercalation can boost their photoelectrochemical performance", Acs Nano, 3, 3437-3446(2009).
Mendive, C.B., Blesa, M.A., and Bahnemann, D.,"The adsorption and photodegradation of oxalic acid at the TiO2 surface", Water Science and Technology, 55, 139-145(2007).
Morrin, A., Killard, A.J., and Smyth, M.R.,"Electrochemical characterization of commercial and home-made screen-printed carbon electrodes", Analytical Letters, 36, 2021-2039(2003).
Nadjo, L., and Savéant, J.,"Linear sweep voltammetry: Kinetic control by charge transfer and/or secondary chemical reactions: I. Formal kinetics", Journal of Electroanalytical Chemistry Interfacial Electrochemistry, 48, 113-145(1973).
Nakamura, I., Negishi, N., Kutsuna, S., Ihara, T., Sugihara, S., and Takeuchi, E.,"Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal", Journal of Molecular Catalysis a-Chemical, 161, 205-212(2000).
Nassoko, D., Li, Y.F., Wang, H., Li, J.L., Li, Y.Z., and Yu, Y.,"Nitrogen-doped TiO2 nanoparticles by using EDTA as nitrogen source and soft template: Simple preparation, mesoporous structure, and photocatalytic activity under visible light", Journal of Alloys and Compounds, 540, 228-235(2012).
Neta, P., and Patterson, L.K.,"Substituted pyridinyl radicals in aqueous solutions. Formation, reactivity, and acid-base equilibriums", The Journal of Physical Chemistry, 78, 2211-2217(1974).
Nguyen, M.T., Nguyen, C.K., Vu, T.M.P., Duong, Q.V., Pham, T.L., and Nguyen, T.C.,"A study on carbon nanotube titanium dioxide hybrids: experiment and calculation", Advances in Natural Sciences-Nanoscience and Nanotechnology, 5, 6(2014).
Nie, X., Zhuo, S., Maeng, G., and Sohlberg, K.,"Doping of TiO2 polymorphs for altered optical and photocatalytic properties", International Journal of Photoenergy, (2009).
Nosaka, Y., and Nosaka, A.Y.,"Generation and detection of reactive oxygen species in photocatalysis", Chemical reviews, 117, 11302-11336(2017).
O′Sullivan, E.J., and Calvo, E.J.,"Reactions at metal oxide electrodes", Comprehensive Chemical Kinetics, Elsevier, (1988).
Pan, B., and Xing, B.S.,"Adsorption mechanisms of organic chemicals on carbon nanotubes", Environmental Science & Technology, 42, 9005-9013(2008).
Papouchado, L., Sandford, R.W., Petrie, G., and Adams, R.N.,"Anodic oxidation pathways of phenolic compounds. 2. Stepwise electron transfers and coupled hydroxylations", J Electroanal Chem, 65, 275-284(1975).
Park, J., and Eun, C.,"Electrochemical behavior and determination of salicylic acid at carbon-fiber electrodes", Electrochimica Acta, 194, 346-356(2016).
Park, J., Show, Y., Quaiserova, V., Galligan, J.J., Fink, G.D., and Swain, G.M.,"Diamond microelectrodes for use in biological environments", Journal of Electroanalytical Chemistry, 583, 56-68(2005).
Pawar, M., Topcu Sendoğdular, S., and Gouma, P.,"A brief overview of TiO2 photocatalyst for organic dye remediation: case study of reaction mechanisms involved in Ce-TiO2 photocatalysts system", Journal of Nanomaterials, 2018, (2018).
Pitzer, K.S.,"Electrolyte theory-improvements since Debye and Hückel", Accounts of Chemical Research, 10, 371-377(1977).
Pop, A., Ilinoiu, E., Manea, F., Pisoi, I., and Burtica, G.,"Determination of organic pollutants from water by electrochemical methods", Environmental Engineering and Management Journal, 10, 75-80(2011).
Prahas, D., Liu, J.C., Ismadji, S., and Wang, M.J.,"Adsorption of tetramethylammonium hydroxide on activated carbon", Journal of Environmental Engineering-Asce, 138, 232-238(2012).
Praveen, P., Viruthagiri, G., Mugundan, S., and Shanmugam, N.,"Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles - Synthesized via sol-gel route", Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 117, 622-629(2014).
Punetha, V.D., Rana, S., Yoo, H.J., Chaurasia, A., McLeskey, J.T., Ramasamy, M.S., Sahoo, N.G., and Cho, J.W.,"Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene", Progress in Polymer Science, 67, 1-47(2017).
Rajendran, S., Nguyen, T.A., Kakooei, S., Li, Y., and Yeganeh, M.,"Corrosion Protection at the Nanoscale", Elsevier, (2020).
Rodriguezamaro, R., Perez, R., Lopez, V., and Ruiz, J.J.,"Study of the electrochemical reduction of nicotinic acid at a mercury electrode", Journal of Electroanalytical Chemistry, 278, 307-322(1990).
Ross, J.W., DeMars, R.D., and Shain, I.,"Analytical applications of hanging mercury drop electrode", Analytical Chemistry, 28, 1768-1771(1965).
Ross, S.D., Finkelstein, M., and Petersen, R.C.,"The electrochemical degradation of quaternary ammonium salts. II. The mechanism of the coupling reaction", Journal of the American Chemical Society, 82, 1582-1585(1960).
Sahu, A., Jain, A., and Gulbake, A.,"The role of carbon nanotubes in nanobiomedicines", International Journal of Pharmacy and Pharmaceutical Sciences, 9, (2017).
Saranya, S., Feminus, J.J., Geetha, B., and Deepa, P.N.,"Simultaneous detection of glutathione, threonine, and glycine at electrodeposited RuHCF/rGO-modified electrode", Ionics, 25, 5537-5550(2019).
Scott, K.,"Electrochemical principles and characterization of bioelectrochemical systems", Microbial Electrochemical and Fuel Cells, 29-66(2016).
Siddiqui, H.,"Modification of physical and chemical properties of titanium dioxide (TiO2) by ion implantation for dye sensitized solar cells", Ion Beam Techniques and Applications, (2018).10.5772/intechopen.83566
Silva, C.G., and Faria, J.L.,"Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix", Applied Catalysis B-Environmental, 101, 81-89(2010).
Singh, S., and Yenkie, M.K.N.,"Scavenging of priority organic pollutants from aqueous waste using granular activated carbon", Journal of the Chinese Chemical Society, 53, 325-334(2006).
Srinivasan, S., and Bommaraju, T.,"Electrochemical technologies and applications", Fuel Cells, Springer, (2006).
Stephenson, R.M.,"Mutual solubilities: water-ketones, water-ethers, and water-gasoline-alcohols", Journal of Chemical and Engineering Data, 37, 80-95(1992).
Su, Y.Y., Li, X.H., Chen, H., Lv, Y., and Hou, X.D.,"Rapid, sensitive and on-line measurement of chemical oxygen demand by novel optical method based on UV photolysis and chemiluminescence", Microchemical Journal, 87, 56-61(2007).
Sugawara, H., Tajima, Y., and Ohmi, T.,"A study on reclaimed photoresist developer using an electrodialysis method", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 41, 2374-2379(2002).
Tahir, M.B., Rafique, M., Rafique, M.S., Nawaz, T., Rizwan, M., and Tanveer, M.,"Photocatalytic nanomaterials for degradation of organic pollutants and heavy metals", Nanotechnology and Photocatalysis for Environmental Applications, Elsevier, (2020).
Tanaka, K., Capule, M.F.V., and Hisanaga, T.,"Effect of crystallinity of TiO2 on its photocatalytic action", Chemical Physics Letters, 187, 73-76(1991).
Tiwari, D., Sailo, L., Yoon, Y.Y., and Lee, S.M.,"Efficient use of ferrate(VI) in the oxidative removal of potassium hydrogen phthalate from aqueous solutions", Environmental Engineering Research, 23, 129-135(2018).
Toghill, K.E., and Compton, R.G.,"Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation", International Journal of Electrochemical Science, 5, 1246-1301(2010).
Torriero, A.A.J., Luco, J.M., Sereno, L., and Raba, J.,"Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid", Talanta, 62, 247-254(2004).
Trang, N.T.H., Ali, Z., and Kang, D.J.,"Mesoporous TiO2 spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries", Acs Applied Materials & Interfaces, 7, 3676-3683(2015).
Wandelt, K.,"Encyclopedia of interfacial chemistry: surface science and electrochemistry", Elsevier, (2018).
Wang, J.J., Yin, G.P., Zhang, J., Wang, Z.B., and Gao, Y.Z.,"High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell", Electrochimica Acta, 52, 7042-7050(2007).
Wang, S., Pei, L.Z., Xie, Y.K., and Cai, Z.Y.,"Nanowire modified electrode for sensitive measurement of nicotinic acid", International Journal of Nanoscience, 13, (2014).
Wang, W.D., Serp, P., Kalck, P., and Faria, J.L.,"Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method", Journal of Molecular Catalysis a-Chemical, 235, 194-199(2005).
Wang, X.X., Yang, N.J., and Wan, Q.J.,"Cyclic voltammetric response of nicotinic acid and nicotinamide on a polycrystalline gold electrode", Electrochimica Acta, 52, 361-368(2006).
Woan, K., Pyrgiotakis, G., and Sigmund, W.,"Photocatalytic carbon‐nanotube–TiO2 composites", Advanced Materials, 21, 2233-2239(2009).
Wu, C.H., Kuo, C.Y., and Chen, S.T.,"Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation", Environmental Technology, 34, 2513-2519(2013).
Wu, J.W., Wang, Q., Umar, A., Sun, S.H., Huang, L., Wang, J.Y., and Gao, Y.S.,"Highly sensitive p-nitrophenol chemical sensor based on crystalline alpha-MnO2 nanotubes", New Journal of Chemistry, 38, 4420-4426(2014).
Xie, X.L., Mai, Y.W., and Zhou, X.P.,"Dispersion and alignment of carbon nanotubes in polymer matrix: A review", Materials Science & Engineering R-Reports, 49, 89-112(2005).
Xiong, X.X., Li, C., Yang, X.Y., Shu, Y., Jin, D.Q., Zang, Y., Shu, Y.S., Xu, Q., and Hu, X.Y.,"In situ grown TiO2 nanorod arrays functionalized by molecularly imprinted polymers for salicylic acid recognition and detection", Journal of Electroanalytical Chemistry, 873, 10(2020).
Yahaya, M.Z., Azam, M.A., Teridi, M.A.M., Singh, P.K., and Mohamad, A.A.,"Recent characterisation of sol-gel synthesised TiO2 nanoparticles", (2017).
Yang, J.Q., Chen, J.W., Zhou, Y.K., and Wu, K.B.,"A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand", Sensors and Actuators B-Chemical, 153, 78-82(2011).
Yao, L.D., Tang, Y.W., and Huang, Z.F.,"Nicotinic acid voltammetric sensor based on molecularly imprinted polymer membrane-modified electrode", Analytical Letters, 40, 677-688(2007).
Yao, Y., Li, G., Ciston, S., Lueptow, R.M., and Gray, K.A.,"Photoreactive TiO2/carbon nanotube composites: Synthesis and reactivity", Environmental Science & Technology, 42, 4952-4957(2008).
Yu.B.Vassilyev, O.A.Khazova, and N.N.Nikolaeva."Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum", J. Electroanal. Chem. Interfacial Electrochem, 196, 105-125(1985).
Zhang, F.J., Chen, M.L., and Oh, W.C.,"Photoelectrocatalytic properties of Ag-CNT/TiO2 composite electrodes for methylene blue degradation", New Carbon Materials, 25, 348-356(2010a).
Zhang, J.L., Zhou, B.X., Zheng, Q., Li, J.H., Bai, J., Liu, Y.B., and Cai, W.M.,"Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array", Water Research, 43, 1986-1992(2009).
Zhang, W.D., Xu, B., Hong, Y.X., Yu, Y.X., Ye, J.S., and Zhang, J.Q.,"Electrochemical oxidation of salicylic acid at well-aligned multiwalled carbon nanotube electrode and its detection", Journal of Solid State Electrochemistry, 14, 1713-1718(2010b).
Zhang, Z.Y., Chang, X., and Chen, A.C.,"Determination of chemical oxygen demand based on photoelectrocatalysis of nanoporous TiO2 electrodes", Sensors and Actuators B-Chemical, 223, 664-670(2016).
Zhao, F.M., Yan, F., Qian, Y., Xu, Y.H., and Ma, C.,"Roughened TiO2 film electrodes for electrocatalytic reduction of oxalic acid to glyoxylic acid", Journal of Electroanalytical Chemistry, 698, 31-38(2013).
Zheng, Q., Zhou, B.X., Bai, J., Li, L.H., Jin, Z.J., Zhang, J.L., Li, J.H., Liu, Y.B., Cai, W.M., and Zhu, X.Y.,"Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand", Advanced Materials, 20, 1044-+(2008).
Zhou, W., Pan, K., Qu, Y., Sun, F.F., Tian, C.G., Ren, Z.Y., Tian, G.H., and Fu, H.G.,"Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity", Chemosphere, 81, 555-561(2010).
Zhu, X.L., Yuan, C.W., Bao, Y.C., Yang, J.H., and Wu, Y.Z.,"Photocatalytic degradation of pesticide pyridaben on TiO2 particles", Journal of Molecular Catalysis a-Chemical, 229, 95-105(2005).
Zia, A.I.,"Smart electrochemical sensing system for the real time detection of endocrine disrupting compounds and hormones", Ph.D. thesis, Massey University Electronics Engineering, New Zealand(2015).
Zielinska-Jurek, A., Kowalska, E., Sobczak, J.W., Lisowski, W., Ohtani, B., and Zaleska, A.,"Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light", Applied Catalysis B-Environmental, 101, 504-514(2011).
胡啟章,「電化學原理與方法」, 五南圖書出版股份有限公司, 台北(2011).
格里弟, and 鮮祺振,「電極動力學」, 財團法人徐氏基金會, 新北(1996).
秦靜如, 盧怡君, 張雅雯, 黃韻寧, and 莊惠婷,「運用奈米碳管修飾電極進行水質分析(2/4)」, 行政院環境保護署環境檢驗所, 桃園(2014).
梁昇致,「利用TiO2電極檢測生活污水中COD之研究」, 碩士論文, 朝陽科技大學環境工程與管理系碩士班, 台中(2013).
陳凱欣,「以溶膠凝膠法製備MWCNTs/TiO2及其光催化特性」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2013).
曾俊豪,「利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究」, 博士論文, 國立成功大學化學工程學系碩博士班, 台南(2009).
曾苓婷,「利用電化學技術監測污水中COD之研究」, 碩士論文, 朝陽科技大學環境工程與管理系碩士班, 台中(2011).
黃喬渝,「單壁奈米碳管修飾電極對硝基酚和銅之電化學分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2012).
黃韻寧,「以二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行COD之伏安法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2015).
楊藏嶽, and 楊慶成,「中國電機工程師手冊第二十二篇-電化學及應用」, 中國電機工程學會, 台灣(1992).
鄭惟文,「以釩改質二氧化鈦電觸媒降解染料AR27之研究」, 碩士論文, 國立中興大學環境工程學系所, 台中(2013).
盧怡君,「以去官能基化二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行COD之伏安法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2015).
羅弘駿,「利用二氧化鈦/活性碳電極進行電容去離子處理鄰苯二甲酸氫鉀之研究」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2018).
指導教授 秦静如(Ching-Ju Chin) 審核日期 2021-6-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明