參考文獻 |
Acevedo, B., Barriocanal, C., 2015. The influence of the pyrolysis conditions in a rotary oven on the characteristics of the products. Fuel Processing Technology. 131, 109-116.
Acevedo, B., Barriocanal, C., Alvarez, R., 2013. Pyrolysis of blends of coal and tyre wastes in a fixed bed system and a rotary oven. Fuel. 113, 817-825.
Achyut K. Panda., R.K. Singh., D.K. Mishra., 2010. Thermolysis of waste plastics to liquid fuelA suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews. 14(1), 233-248.
Al Hosni, Asma S., Pittman, Jon K., Robson, Geoffrey D., 2019. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Management. 97, 105-114.
Ali Zakera., Zhi Chena., Xiaolei Wangb., Qiang Zhangc., 2019. Microwave-assisted pyrolysis of sewage sludge. Fuel Processing Technology. 187, 84-10.
Antoniou, N., Zabaniotou, A., 2015. Experimental proof of concept for a sustainable End of Life Tyres pyrolysis with energy and porous materials production. Journal of Cleaner Production. 101, 323-336.
Anuar Sharuddin., Shafferina Dayana., Abnisa Faisal., Wan Daud, Wan Mohd Ashri., Aroua, Mohamed Kheireddine., 2016. A review on pyrolysis of plastic wastes. Energy Conversion and Management. 115, 308-326.
Aoyagi Y., K. Yamashita., Y. Doi ., 2002. Thermal degradation of Poly[(R)-3-hydroxybutyrate], Poly[ε-caprolactone), and Poly[(S)-lactide] Polymer Degradation Stability. 76 , 53-59.
Appelt, J., Heschel, W., Meyer, B., 2016. Catalytic pyrolysis of central German lignite in a semi-continuous rotary kiln — Performance of pulverized one-way ZSM-5 catalyst and ZSM-5-coated beads. Fuel Processing Technology. 144, 56-63.
Auras R., Harte B., Selke S., 2004. An overview of polylactides as packaging materials. Macromol Biosci. 4, 35-64.
Ayanoğlu, A., Yumrutaş, R., 2016. Rotary kiln and batch pyrolysis of waste tire to produce gasoline and diesel like fuels. Energy Conversion and Management. 111, 261-270.
Boateng, A. A., Barr, P. V., 1996. A thermal model for the rotary kiln including heat transfer within the bed. International Journal of Heat and Mass Transfer. 39(10), 2131-2147.
Bridgwater AV., 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 38, 68-94.
Butler, E., Devlin, G., Meier, D., McDonnell, K., 2011. A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable and Sustainable Energy Reviews. 15(8), 4171-4186.
Díez C., Sánchez M.E., Haxaire P., Martínez O., Morán A., 2005. Pyrolysis of tyres: A comparison of the results from a fixed-bed laboratory reactor and a pilot plant (rotatory reactor). Journal of Analytical and Applied Pyrolysis. 74(1-2), 254-258.
Cao T., Chen F., Meng J., 2018. Environmental effects influence of pyrolysis temperature and residence time on available nutrients for biochars derived from various biomass Energy Soure. Part A Recover. Util. Environ. Eff. 40, 413-419.
Carlson, T. R., Cheng, Y. T., Jae, J., Huber, G.W., 2011. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. 4,145-161.
Carrasco, F., Pérez Maqueda, L. A., Sánchez Jiménez, P. E., Perejón, A., Santana, O. O., Maspoch, M. L., 2013. Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission. Polymer Testing. 32(5), 937-945.
Chen D., Gao A., Cen K., Zhang J., Cao X., Ma Z., 2018. Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin. Energy Convers Manage. 169,228-37.
Chen, Xu., Chen, Yingquan., Yang, Haiping., Chen, Wei., Wang, Xianhua., Chen, Hanping., 2017. Fast pyrolysis of cotton stalk biomass using calcium oxide. Bioresour Technol. 233, 5-20.
Chico research foundation. Performance evaluation of environmentally degradable plastic packaging and disposable food service ware – final report june, produced by csu. 2007.
Chien, Y.C., Liang, C.,Yang, S., 2011. Exploratory study on the pyrolysis and PAH emissions of polylactic acid. Atmospheric Environment. 45, 123-127.
Chireshe, F., Collard, F. X., Görgens, J. F., 2020. Production of low oxygen bio-oil via catalytic pyrolysis of forest residues in a kilogram-scale rotary kiln system. Journal of Cleaner Production 260.
Chireshe, Farai., Collard, François Xavier., Görgens, Johann F., 2020. Production of low oxygen bio-oil via catalytic pyrolysis of forest residues in a kilogram-scale rotary kiln system. Journal of Cleaner Production. 260.
Chuan Ma., Yan Qianqian., Yu Jie., Chen Tao., Wang Dingshun., Liu Sheng., Kagiso Bikane., Sun Lushi., 2019. The behavior of heteroatom compounds during the pyrolysis of waste computer casing plastic under various heating conditions. Journal of Cleaner Production. 219,461-470.
Cornelissen T., Yperman J., Reggers G., Schreurs S., Carleer R., 2008. Flash Co-pyrolysis of Biomass with Polylactic Acid. Part 1: Influence on bio-oil yield and heating value. Fuel, 87, 1031-1041.
Dai, X., Yin, X., Wu, C., Zhang, W.,Chen, Y., 2001. Pyrolysis of waste tires in a circulating fluidized-bed reactor. Energy. 26(4), 385-399.
Danish M., Kumar S., Kumar S., 2012. Exact analytical solution for the bed depth profile of solids flowing in a rotary kiln. Powder Technol. 230, 29-35.
De Conto, D., Silvestre, W. P., Baldasso, C.,Godinho, M., 2016. Performance of rotary kiln system for the elephant grass pyrolysis. Bioresource Technology. 218, 153-160.
Djukić-Vuković, A., Mladenović, D., Ivanović, J., Pejin, J., Mojović, L .,2019. Towards sustainability of lactic acid and poly-lactic acid polymers production. Renewable and Sustainable Energy Reviews. 108,238-252.
FakhrHoseini, S. M. and Dastanian, M., 2013. Predicting Pyrolysis Products of PE, PP, and PET Using NRTL Activity Coefficient Model. Journal of Chemistry. 2013,1-5.
Fivga, A., Dimitriou, I., 2018. Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment. Energy. 149, 865-874.
Freda, Cesare., Cornacchia, Giacinto., Romanelli, Assunta., Valerio, Vito., Grieco, Massimiliano., 2018. Sewage sludge gasification in a bench scale rotary kiln. Fuel. 212,88-94.
Gang Xue., Marzena Kwapinska., Alen Horvat., Zhonglai Li., Stephen Dooley., Witold Kwapinski., James J. Leahy., 2014. Gasification of Miscanthus x giganteus in an Air-Blown Bubbling Fluidized Bed: A Preliminary Study of Performance and Agglomeration. Energy & Fuels. 28(2),1121-1131.
Garlotta D., 2001. A literature review of poly(lactic acid). J. Polym. Environ. 9 ,63-84.
Galvagno S., Casu S., Casabianca T., Calabrese A., Cornacchia G., 2002. Pyrolysis process for the treatment of scrap tyres: preliminary experimental results. 22(8), 917-923.
Geyer, R., Jambeck J.R., Law, K.L., 2017. Production, use and fate of all plastics ever made. Science Advances 3(7).
Greene J.,2007. Biodegradation of compostable plastics in green yard-waste compost environment. J Polym Environ. 15,269.
Gulab, H., Jan, M.R., Shah, J., Manos, G., 2010. Plastic catalytic pyrolysis to fuels as tertiary polymer recycling method: effect of process conditions. J. Environ. Sci. Health., Part A . 45, 908-915.
Hu, X., Gholizadeh M., 2019. Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage.Journal of Energy Chemistry. 39,109-143.
Hu, Yunzi., Daoud, Walid A., Fei, Bin., Chen, Lei., Kwan, Tsz Him., Lin, Ki Carol Sze., 2017. Efficient ZnO aqueous nanoparticle catalysed lactide synthesis for poly(lactic acid) fibre production from food waste.Journal of Cleaner Production. 165,157-167.
Huang Y., Gao Y., Zhou H., Sun H., Zhou J., Zhang S., 2018. Pyrolysis of palm kernel shell with internal recycling of heavy oil. Bioresour Technol. 272,77-82.
Ji L., Hervier A., Sablier M., 2006. Study on the pyrolysis of polyethylene in the presence of iron and copper chlorides. Chemosphere. 65,1120-30.
Jung, S. H., Kim, S. J.,Kim, J. S., 2013. The influence of reaction parameters on characteristics of pyrolysis oils from waste high impact polystyrene and acrylonitrile–butadiene–styrene using a fluidized bed reactor.Fuel Processing Technology. 116, 123-129.
Kalargaris, I., Tian, G., Gu, S., 2017. The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy. 131, 179-185.
Kale G., Auras R., Singh S., Narayan R..2007. Biodegradability of polylactide bottles in real and stimulated composting conditions. Polym Test. 26,1049.
Karamanlioglu, M., Preziosi, R., Robson, G.D., 2017. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): a review. Polym. Degrad. Stabil. 137, 122-130.
Karamanlioglu, M.,Robson, G. D., 2013. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polymer Degradation and Stability. 98(10), 2063-2071.
Kim, Y.-M., Park, S., Kang, B. S., Jae, J., Rhee, G. H., Jung, S.-C.,Park, Y.-K., 2018. Suppressed char agglomeration by rotary kiln system with alumina ball during the pyrolysis of Kraft lignin. Journal of Industrial and Engineering Chemistry. 66,72-77.
Kopinke, F. D., Remmler, M., Mackenzie, K., Möder, M., Wachsen, O.,1996. Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid). Polymer Degradation and Stability. 53(3), 329-342.
Lam, Su Shiung., Mahari, Wan AdibahWan., Ok,Yong Sik., Peng, Wanxi., Chong, Cheng TungChongd., Ma, Nyuk Ling., Tsang, Daniel C.W., 2019. Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis. Renewable and Sustainable Energy Reviews. 115, 109359.
Lee Kyong Hwan and Shin Dae Hyun., 2006. A Comparative Study of Liquid Product on Non-Catalytic and Catalytic Degradation of Waste Plastics sing Spent FCC catalyst. Korean J. Chem Eng. 23,209-215.
Li A., Li X., Li S., Ren Y., Chi Y., Yan J., 1999. Pyrolysis of solid waste in a rotary kiln: influence of final pyrolysis temperature on the pyrolysis products. J Anal Appl Pyrol.50,149-62.
Life cycle assessment, LCA. website: wileyonlinelibrary.com.
Lim, L. T., Auras, R., Rubino, M., 2008. Processing technologies for poly(lactic acid). Progress in Polymer Science. 33(8), 820-852.
Lopez A., Marco I. de., Caballero B.M., Laresgoiti M.F., Adrados A., 2011. Influence of Time and Temperature on Pyrolysis of Plastic Wastes in a Semi-Batch Reactor. Chemical Engineering Journal. 173,62-71.
Ma Sijie., Leong Huini., He Limo., Xiong Zhe., Han Hengda., Jiang Long., Wang Yi., Hu Song., Su Sheng., Xiang Jun., 2020. Effects of pressure and residence time on limonene production in waste tires pyrolysis process. Journal of Analytical and Applied Pyrolysis,151.
Ma Zhengzhao., Gao Ningbo., Xie Lei., Li Aimin., 2014. Study of the fast pyrolysis of oilfield sludge with solid heat carrier in a rotary kiln for pyrolytic oil production. Journal of Analytical and Applied Pyrolysis. 105, 183-190.
Malinconico, M., Vink, E.T.H., Cain, A., 2018. Applications of poly(lactic acid) in commodities and specialties. Advances in Polymer Science. Springer Berlin Heidelberg, Berlin, Heidelberg. 282,35-50.
Mastral F.J., Esperanza E., Garcia P., Juste M., 2002. Pyrolysis of High-Density Polyethylene in a Fluidised Bed Reactor. Influence of the Temperature and Residence Time. Journal of Analytical and Applied Pyrolysis. 63,1-15.
Material Economics, P. A., Enkvist, P. Klevnäs (Eds.)., The Circular Economy – a Powerful Force for Climate Mitigation 2018.
McNeill, I. C.,Leiper, H. A., 1985. Degradation studies of some polyesters and polycarbonates—2. Polylactide: Degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polymer Degradation and Stability. 11(4), 309-326.
Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M.,Nizami, A. S., 2016. Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection. 102, 822-838.
Miandad, R., Nizami, A.S., Rehan, M., Barakat, M.A., Khan, M.I., Mustafa, A., Ismail, I.M.I., Murphy, J.D., 2016. Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil.Waste Manag. 58, 250-259.
Miskolczi N., A. Angyal, L. Bartha, I. Valkai., 2009. Fuel by pyrolysis of Waste Plastics from Agricultural and Packaging Sectors in a Pilot Scale Reactor. Fuel Processing Technology. 90,1032 -1040.
Miskolczi, N., 2013. Co-pyrolysis of petroleum based waste HDPE, poly-lactic-acid biopolymer and organic waste. Journal of Industrial and Engineering Chemistry. 19(5), 1549-1559.
Mkhize, N. M., Danon, B., Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Görgens, J. F., 2019. Influence of reactor and condensation system design on tyre pyrolysis products yields. Journal of Analytical and Applied Pyrolysis. 92, 195-202.
Motoyuki Sugano., Akihiro Komatsu., Masanori Yamamoto., Mika Kumagai., Takayuki Shimizu., Katsumi Hirano., Kiyoshi Mashimo., 2009. Liquefaction Process for a Hydrothermally Treated Waste Mixture Containing Plastics. J. Mater Cycles Waste Manag. 11,27-31.
Nafsun, A.I., Herz, F., Specht, E., Komossa, H., Wirtz, S., Scherer, V., Liu, X., 2017. Thermal bed mixing in rotary drums for different operational parameters. Chemical Engineering Science. 160,346-353.
Omura M., T. Tsukegi, Y. Shirai, H. Nishida, T. Endo., 2006. Thermal degradation behavior of poly(lactic acid) in a blend with polyethylene Industrial and Engineering Chemistry Research. 45,2949-2953.
Paula Sangines., María Paz., Francisco Sánchez., Guillermo San Miguel., 2015. Slow pyrolysis of olive stones in a rotary kiln: Chemical and energy characterization of solid, gas, and condensable products. Journal of Renewable and Sustainable Energy, 7,1-13.
Park, K. B., Jeong, Y.-S., Guzelciftci, B., Kim, J.-S., 2018. Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy.166,343-351.
Performance evaluation of environmentally degradable plastic packaging and disposable food service ware. final report June 2007. produced by Chico Research Foundation.
Plastics Europe,website:https://www.plasticseurope.org/application/files/6315/4510/9 658/Plastics_the_facts_2018_AF_web.pdf
Park Sang Shin., Seo Dong Kyun., Lee Sang Hoon., Yu Tae-U., Hwang Jungho., 2012. Study on Pyrolisis Characteristics of Refuse Plastic Fuel Using Lab-Scale Tube Furnace and Thermogravimetric Analysis Reactor. J. of Analytical and Applied Pyrolysis. 97,29-38.
Sangeetha V.H., Deka Harekrishna., Varghese T.O., Nayak S.K.,2016. State of the Art and Future Prospectives of Poly(Lactic Acid) Based Blends and Composites. Polymer Composites.19.
Sedlarik V., Saha N., Sedlarikova J., Saha P.,2008. Biodegradation of blown films based on poly(lactic acid) under natural conditions. Macromol Symp. 272,100.
Seo, Y. H., Lee, K. H., Shin, D. H.,2003. Investigation of catalytic degradation of high-density polyethylene by hydrocarbon group type analysis. Journal of Analytical and Applied Pyrolysis, 70(2), 383-398.
Shadangi, K. P. and Mohanty K., 2015. Co-pyrolysis of Karanja and Niger seeds with waste polystyrene to produce liquid fuel. Fuel,153, 492-498.
Shi, B., Palfery, D., 2010. Enhanced mineralization of PLA meltblown materials due to plasticization. J. Polym. Environ. 18 (2), 122-127.
Silvestre, W. P., Pauletti, G. F., Godinho, M., Baldasso, C.,2018. Fodder radish seed cake pyrolysis for bio-oil production in a rotary kiln system. Chemical Engineering and Processing - Process Intensification. 124, 235-244.
Sintim, H. Y., Bary, A. I., Hayes, D. G., English, M. E., Schaeffer, S. M., Miles, C. A., Flury, M., 2019. Release of micro- and nanoparticles from biodegradable plastic during in situ composting. Science of The Total Environment. 675,686-693.
Sivalingam, G., Madras, G., 2004. Thermal degradation of binary physical mixtures and copolymers of poly(ε-caprolactone), poly(d, l-lactide), poly(glycolide). Polymer Degradation and Stability. 84(3), 393-398.
Solar, J., de Marco, I., Caballero, B.M., Lopez-Urionabarrenechea, A., Rodriguez, N., Agirre, I., Adrados, A., 2016. Influence of temperature and residence time in the pyrolysis of woody biomass waste in a continuous screw reactor.Biomass and Bioenergy. 95,416-423.
Stegen, S., Kaparaju P., 2020. Effect of temperature on oil quality obtained through pyrolysis of sugarcane bagasse.Fuel 276.112-118.
Sun, C., Li, C., Tan, H., Zhang, Y., 2019. Synergistic effects of wood fiber and polylactic acid during co-pyrolysis using TG-FTIR-MS and Py-GC/MS. Energy Conversion and Management. 202, 112212.
Tomokazu Mori., Haruo Nishida., Yoshihito Shirai., Takeshi Endo., 2004. Effects of chain end structures on pyrolysis of poly(-lactic acid) containing tin atoms. Polymer Degradation and Stability. 84(2), 243-251.
Tripathi M., Sahu J.N., Ganesan P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review Renew. Sust. Energ. Rev. 55, 467-481.
Tulashie, Samuel Kofi.,Boadu, Enoch Kofi.,Dapaah, Samue., 2019. Plastic waste to fuel via pyrolysis: A key way to solving the severe plastic waste problem in Ghana. Thermal Science and Engineering Progress. 11, 417-424.
Undri, Andrea., Rosi, Luca., Frediani, Marco., Frediani, Piero., 2014. Conversion of poly(lactic acid) to lactide via microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis. 110, 55-65.
Wang, Zhipu., Liu, Kai., Xie, Like., Zhu, Henan., Ji, Shibo., Shu, Xinqian., Zhang, Yuxiu l., 2019. Effects of residence time on characteristics of biochars prepared via co-pyrolysis of sewage sludge and cotton stalks.Journal of Analytical and Applied Pyrolysis 142.
Weiss, M., Haufe, J., Carus, M., Brandão, M., Bringezu, S., Hermann, B., 2012. A review of the environmental impacts of biobased materials. J. Ind. Ecol. 16 (S1), 169-181.
Wong, S.L., Ngadi, N., Abdullah, T.A.T., Inuwa, I.M., 2015. Current state and future prospects of plastic waste as source of fuel: A review. Renewable and Sustainable Energy Reviews. 50,1167-1180.
Yazdani, E., Hashemabadi, S. H., Taghizadeh, A., 2019. Study of waste tire pyrolysis in a rotary kiln system in a wide range of pyrolysis temperature. Waste Management. 85, 195-201.
Yoshioka T., Grause G., Eger C., Kaminsky W., Okuwaki A., 2004. Pyrolysis of poly(ethylene terephthalate) in a fluidised bed plant. Polym Degrad Stab. 86,499-504.
Zhang ZS., Wu YQ., Li H., Li XG., Gao X., 2018. A simple step-change method to determine mean residence time in rotary kiln and a predictive model at low slope. Powder Technology. 333, 30-37.
Zhang, Y., Ji, G., Ma, D., Chen, C., Wang, Y., Wang, W., Li, A., 2020. Exergy and energy analysis of pyrolysis of plastic wastes in rotary kiln with heat carrier. Process Safety and Environmental Protection. 142,203-211.
Zhang, Yutao., Ji, Guozhao., Chen, Chuanshuai., Wang, Yinxiang., Wang, Weijian., Li, Aimin., 2020.Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Processing Technology 206.
王韻婷,塑膠廢棄物與生質物共同熱裂解之動力學研究,國立高雄第一科技大學,碩士論文,高雄,2014。
行政院環保署,網址: https://recycle.epa.gov.tw/ConvenienceServices/Downloads,2021年。
李兆彥,聚乳酸(Lactic acid)熱安定性之研究,高苑科技大學,碩士論文,高雄,2006。
林文成,聚乳酸(Lactic acid)熱處理之可行性研究,輔英科技大學,碩士論文,高雄,2015。
林協坤,聚乳酸(Lactic acid)(PLA)與回收聚丙烯(RPP)共混物之熱性質、形態學與機械性質及其改質相關研究探討,國立台灣科技大學,碩士論文,臺北,2016。
林柏鋒,江康鈺,簡光勵,呂承翰,都市下水污泥催化裂解衍生之生質油特性評估研究,中華民國環境工程學會2012暨廢棄物處理技術研討會,桃園,2012。
姚彥丞,江康鈺,呂承翰,塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究,中華民國環境工程學會2017廢棄物處理技術研討會,臺北,2017。
許晨霈,稻殼於氣泡式流體化爐床中快速熱解之研究,長庚大學,碩士論文,桃園,2014。
葉獻彬,生物可降解性聚乳酸(Lactic acid)高分子之合成與降解性質探討,國立陽明大學,碩士論文,臺北,2001。
簡聖珉,應用催化裂解技術轉換下水污泥為生質油之可行性研究,逢甲大學,碩士論文,台中,2015
羅政忠,稻殼前處理及其熱解反應動力學之研究,國立中央大學,博士論文,桃園,1998。 |