博碩士論文 107326019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.226.164.143
姓名 張佳棋(Jia-Qi Zhang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 生質塑膠熱裂解產能效率之評估研究
(Study on Energy from Polylactic Acid (PLA) Plastic by Pyrolysis)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-1以後開放)
摘要(中) 本研究利用固定床管狀爐(以下簡稱固定床)及旋轉窯反應系統(以下簡稱旋轉窯),評估生質塑膠(Polylactic Acid, PLA)熱裂解轉換為能源之可行性,試驗分別控制固定床反應溫度500 ℃、旋轉窯溫度500~600 ℃及斜率0.027~0.045等條件下,探討不同系統及不同操作條件,對生質塑膠轉換能源效率與裂解油物種特性變化之影響。研究結果顯示,應用固定床熱裂解反應系統,產物主要為氣體及裂解油,各約佔72.91~79.52 wt%及16.74~18.62 wt%,其中裂解油之熱值為1,795~1,951 kcal/kg。旋轉窯系統之熱傳反應較佳,熱裂解PLA之氣體產物較多,約為79.85~94.99 wt%,而裂解油之產量則介於4.89~20.06 wt%,其中裂解油之熱值介於1,146~3,730 kcal/kg。
根據不同系統產生裂解油品之輕質油(light fraction)及重質油(heavy fraction)之分析結果顯示,旋轉窯系統之輕質油比例較高,其中固定床及旋轉窯系統產生之輕質油及重質油比例,分別為54~56%及44~46%,以及63.88~77.99%及22.01~36.12%。本研究嘗試以裂解油品之氧/碳比(O/C比),作為裂解油老化發生潛勢之評估指標,其中固定床及旋轉窯產生之輕質油O/C比分別為0.78及0.81~1.71,重質油O/C比則分別為0.50及0.18~1.05,均在老化發生潛勢之範圍。然旋轉窯系統操作在斜率0.027之條件下,其重質油O/C比介於0.18~0.31,明顯具有改善重質油老化現象之發生潛勢。
根據裂解油之官能基分析結果顯示,僅在旋轉窯斜率0.027條件下,有增強C-H伸縮震動(2,853、2,926 cm-1)之趨勢,亦即含甲基之化合物含量增加,其餘裂解油之官能基則為C-H變形震動結構(1,830、1,450、1,460 cm-1)以及C-H彎曲震動結果(600-900 cm-1)等。根據裂解油之GC-MS分析結果顯示,固定床裂解油主要物種為丙交酯(Dilactide)佔80%以上,旋轉窯裂解油主要物種,除丙交酯(Dilactide)外,尚包括乳酸(Lactic acid)及二丙酮醇(Diacetone alcohol)等,可見使用旋轉窯裂解PLA,有助於回收乳酸(Lactic acid)等物質,提升液體產物之後續應用。
摘要(英) This research aims to evaluate the energy conversion eifficiency in pyrolysis of Polylactic Acid (PLA) by using fixed bed and rotary kiln system with controlled the temperature 500 ℃ (fixed bed system), 500~600 ℃ (rotary kiln system), and kiln slope 0.027-0.045. The different systems and experimental conditions effects on the energy conversion efficiency of PLA, pyrolytic oil characteristics and speciation were also conducted. The experimental results indicated that the major pyrolytic products of PLA produced by fixed bed system were consisted of 72.91-79.52 wt% gas and 16.74-18.62 wt% oil, respectively. Meanwhile, the heating value of pyrolytic oil was ranged from 1,795 to1,951 kcal/kg. The gaseous product yield was increased and ranged from 79.85 to 94.99 wt% with corresponding the pyrolytics oil decreased and ranged between 4.89 and 20.06 wt% by rotary kiln system. The heating valus of pyrolytic oil was approximately 1,146-3,730 kcal/kg and slightly higher than that of oil produced by fixed bed. This is due to the good heat transfer performance occurred in rotary kiln system.
To compare the pyrolysis system effects on pyrolytic oil characteristics, the light fraction pyrolytic oil yield by rotary kiln system was significantly higher than that of produced from fixed bed system. The light and heavy fraction pyrolytic oil produced form fixed bed and rotary kiln system are 54-56% and 44-46%, 63.88-77.99% and 22.01-36.12%, respectively. The oxygen-to-carbon ratio (O/C ratio) of pyrolytic oil is a good index for predicting the aged potential. The O/C ratio of light and heavy fraction produced from fixed bed and rotary kiln system were 0.78 and 0.81-1.71, 0.5 and 0.18-1.05, respectively. Accordingly, the pyrolytic oils produced in this research have the aged potential during the storage and/or transportation stage. However, In the case of rotary kiln system and kiln slope 0.027, the O/C ratio was approximately ranged from 0.18 and 0.31 that it implied that pyrolytic oil aged potential could be effectively inhibited.
According to the analysis results of functional group in pyrolytic oil, in the case of kiln slope 0.027, C-H Stretch (2,853、2,926 cm-1) speciation has enhanced by PLA pyrolysis. It means that the content of methyl group was increased. The main species of pyrolytic oil produced from fixed bed and rotary kiln system is dilactide. However, lactic acid and diacetone alcohol were also identified by PLA pyrolysis using rotary kiln system. The results obtained from this research could provide important information for developing the application of recycled Lactic acid produced from PLA pyrolysis using rotary kiln system.
關鍵字(中) ★ 生質塑膠
★ 熱裂解
★ 旋轉窯
★ 固定床
關鍵字(英) ★ Biodegradable plastic
★ pyrolysis
★ fixed bed system
★ rotary kiln system.
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xi
第一章 前言 1
第二章 文獻回顧 5
2-1 聚乳酸(Polylactic acid, PLA)處理與現況分析 6
2-1-1 PLA基本特性 6
2-1-2 PLA處理技術 8
2-2熱裂解應用於PLA處理現況 11
2-3熱裂解操作對產物之影響 14
2-3-1操作溫度 14
2-3-2停留時間 15
2-3-3添加催化劑 18
2-3-4熱裂解系統 19
第三章 研究材料與方法 27
3-1研究材料 27
3-2試驗方法 28
3-2-1原料之動力學分析 28
3-2-2試驗設備與操作條件 30
3-3-3試驗操作步驟 33
3-3分析項目與方法 34
3-3-1塑膠原料 34
3-3-2熱裂解產物 37
第四章 結果與討論 43
4-1試驗材料之基本特性分析 43
4-1-1塑膠原料之基本特性分析結果 43
4-1-2 PLA之熱反應動力特性分析 43
4-2裂解操作條件對產物之分析結果 49
4-2-1固定床管狀爐之產物分析結果 49
4-2-2旋轉窯系統之產物分析結果 52
4-2-3比較不同反應系統對產物分析結果 61
4-3熱裂解產物之特性分析 64
4-3-1固定床管狀爐 64
4-3-2旋轉窯 68
4-3-3比較不同反應系統對產物特性之影響 85
4-3-4比較不同反應系統對裂解油物種鑑定分析結果之影響 86
4-4熱裂解產物之能源分析結果 97
4-4-1旋轉窯對熱裂解產物高位發熱量之影響 97
4-4-2不同反應系統對熱裂解產物高位發熱量之影響 100
4-5產能效率評估 103
4-5-1碳分佈 103
4-5-2能源密度 109
第五章 結果與討論 115
5-1 結論 115
5-1-1不同反應系統對裂解產物之影響結果 115
5-1-2不同斜率、溫度對裂解產物之影響結果 116
5-1-3不同反應系統、溫度與斜率對油品特性分析之影響結果 117
5-2建議 118
參考文獻 119
附錄 131
附錄一、不同反應系統對產物量之影響 132
附錄二、固定床之氣體體積變化 133
附錄三、旋轉窯溫度600 ℃、斜率0.045之氣體體積變化 135
附錄四、旋轉窯溫度500 ℃、斜率0.045之氣體體積變化 136
附錄五、旋轉窯溫度600 ℃、斜率0.036之氣體體積變化 137
附錄六、旋轉窯溫度500 ℃、斜率0.036之氣體體積變化 138
附錄七、旋轉窯溫度600 ℃、斜率0.027之氣體體積變化 139
附錄八、旋轉窯溫度500 ℃、斜率0.027之氣體體積變化 140
附錄九、校正前氣體重量彙整表 141
附錄十、校正因子與校正後氣體重量彙整表 142
附錄十一、固定床GC-MS數據 143
附錄十二、旋轉窯溫度600 ℃、斜率0.045 之GC-MS數據 147
附錄十三、旋轉窯溫度500 ℃、斜率0.045 之GC-MS數據 155
附錄十四、旋轉窯溫度600 ℃、斜率0.036 之GC-MS數據 165
附錄十五、旋轉窯溫度500 ℃、斜率0.036 之GC-MS數據 173
附錄十六、旋轉窯溫度600 ℃、斜率0.027 之GC-MS數據 183
附錄十七、旋轉窯溫度500 ℃、斜率0.027 之GC-MS數據 195
參考文獻 Acevedo, B., Barriocanal, C., 2015. The influence of the pyrolysis conditions in a rotary oven on the characteristics of the products. Fuel Processing Technology. 131, 109-116.
Acevedo, B., Barriocanal, C., Alvarez, R., 2013. Pyrolysis of blends of coal and tyre wastes in a fixed bed system and a rotary oven. Fuel. 113, 817-825.
Achyut K. Panda., R.K. Singh., D.K. Mishra., 2010. Thermolysis of waste plastics to liquid fuelA suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews. 14(1), 233-248.
Al Hosni, Asma S., Pittman, Jon K., Robson, Geoffrey D., 2019. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Management. 97, 105-114.
Ali Zakera., Zhi Chena., Xiaolei Wangb., Qiang Zhangc., 2019. Microwave-assisted pyrolysis of sewage sludge. Fuel Processing Technology. 187, 84-10.
Antoniou, N., Zabaniotou, A., 2015. Experimental proof of concept for a sustainable End of Life Tyres pyrolysis with energy and porous materials production. Journal of Cleaner Production. 101, 323-336.
Anuar Sharuddin., Shafferina Dayana., Abnisa Faisal., Wan Daud, Wan Mohd Ashri., Aroua, Mohamed Kheireddine., 2016. A review on pyrolysis of plastic wastes. Energy Conversion and Management. 115, 308-326.
Aoyagi Y., K. Yamashita., Y. Doi ., 2002. Thermal degradation of Poly[(R)-3-hydroxybutyrate], Poly[ε-caprolactone), and Poly[(S)-lactide] Polymer Degradation Stability. 76 , 53-59.
Appelt, J., Heschel, W., Meyer, B., 2016. Catalytic pyrolysis of central German lignite in a semi-continuous rotary kiln — Performance of pulverized one-way ZSM-5 catalyst and ZSM-5-coated beads. Fuel Processing Technology. 144, 56-63.
Auras R., Harte B., Selke S., 2004. An overview of polylactides as packaging materials. Macromol Biosci. 4, 35-64.
Ayanoğlu, A., Yumrutaş, R., 2016. Rotary kiln and batch pyrolysis of waste tire to produce gasoline and diesel like fuels. Energy Conversion and Management. 111, 261-270.
Boateng, A. A., Barr, P. V., 1996. A thermal model for the rotary kiln including heat transfer within the bed. International Journal of Heat and Mass Transfer. 39(10), 2131-2147.
Bridgwater AV., 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 38, 68-94.
Butler, E., Devlin, G., Meier, D., McDonnell, K., 2011. A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable and Sustainable Energy Reviews. 15(8), 4171-4186.
Díez C., Sánchez M.E., Haxaire P., Martínez O., Morán A., 2005. Pyrolysis of tyres: A comparison of the results from a fixed-bed laboratory reactor and a pilot plant (rotatory reactor). Journal of Analytical and Applied Pyrolysis. 74(1-2), 254-258.
Cao T., Chen F., Meng J., 2018. Environmental effects influence of pyrolysis temperature and residence time on available nutrients for biochars derived from various biomass Energy Soure. Part A Recover. Util. Environ. Eff. 40, 413-419.
Carlson, T. R., Cheng, Y. T., Jae, J., Huber, G.W., 2011. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. 4,145-161.
Carrasco, F., Pérez Maqueda, L. A., Sánchez Jiménez, P. E., Perejón, A., Santana, O. O., Maspoch, M. L., 2013. Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission. Polymer Testing. 32(5), 937-945.
Chen D., Gao A., Cen K., Zhang J., Cao X., Ma Z., 2018. Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin. Energy Convers Manage. 169,228-37.
Chen, Xu., Chen, Yingquan., Yang, Haiping., Chen, Wei., Wang, Xianhua., Chen, Hanping., 2017. Fast pyrolysis of cotton stalk biomass using calcium oxide. Bioresour Technol. 233, 5-20.
Chico research foundation. Performance evaluation of environmentally degradable plastic packaging and disposable food service ware – final report june, produced by csu. 2007.
Chien, Y.C., Liang, C.,Yang, S., 2011. Exploratory study on the pyrolysis and PAH emissions of polylactic acid. Atmospheric Environment. 45, 123-127.
Chireshe, F., Collard, F. X., Görgens, J. F., 2020. Production of low oxygen bio-oil via catalytic pyrolysis of forest residues in a kilogram-scale rotary kiln system. Journal of Cleaner Production 260.
Chireshe, Farai., Collard, François Xavier., Görgens, Johann F., 2020. Production of low oxygen bio-oil via catalytic pyrolysis of forest residues in a kilogram-scale rotary kiln system. Journal of Cleaner Production. 260.
Chuan Ma., Yan Qianqian., Yu Jie., Chen Tao., Wang Dingshun., Liu Sheng., Kagiso Bikane., Sun Lushi., 2019. The behavior of heteroatom compounds during the pyrolysis of waste computer casing plastic under various heating conditions. Journal of Cleaner Production. 219,461-470.
Cornelissen T., Yperman J., Reggers G., Schreurs S., Carleer R., 2008. Flash Co-pyrolysis of Biomass with Polylactic Acid. Part 1: Influence on bio-oil yield and heating value. Fuel, 87, 1031-1041.
Dai, X., Yin, X., Wu, C., Zhang, W.,Chen, Y., 2001. Pyrolysis of waste tires in a circulating fluidized-bed reactor. Energy. 26(4), 385-399.
Danish M., Kumar S., Kumar S., 2012. Exact analytical solution for the bed depth profile of solids flowing in a rotary kiln. Powder Technol. 230, 29-35.
De Conto, D., Silvestre, W. P., Baldasso, C.,Godinho, M., 2016. Performance of rotary kiln system for the elephant grass pyrolysis. Bioresource Technology. 218, 153-160.
Djukić-Vuković, A., Mladenović, D., Ivanović, J., Pejin, J., Mojović, L .,2019. Towards sustainability of lactic acid and poly-lactic acid polymers production. Renewable and Sustainable Energy Reviews. 108,238-252.
FakhrHoseini, S. M. and Dastanian, M., 2013. Predicting Pyrolysis Products of PE, PP, and PET Using NRTL Activity Coefficient Model. Journal of Chemistry. 2013,1-5.
Fivga, A., Dimitriou, I., 2018. Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment. Energy. 149, 865-874.
Freda, Cesare., Cornacchia, Giacinto., Romanelli, Assunta., Valerio, Vito., Grieco, Massimiliano., 2018. Sewage sludge gasification in a bench scale rotary kiln. Fuel. 212,88-94.
Gang Xue., Marzena Kwapinska., Alen Horvat., Zhonglai Li., Stephen Dooley., Witold Kwapinski., James J. Leahy., 2014. Gasification of Miscanthus x giganteus in an Air-Blown Bubbling Fluidized Bed: A Preliminary Study of Performance and Agglomeration. Energy & Fuels. 28(2),1121-1131.
Garlotta D., 2001. A literature review of poly(lactic acid). J. Polym. Environ. 9 ,63-84.
Galvagno S., Casu S., Casabianca T., Calabrese A., Cornacchia G., 2002. Pyrolysis process for the treatment of scrap tyres: preliminary experimental results. 22(8), 917-923.
Geyer, R., Jambeck J.R., Law, K.L., 2017. Production, use and fate of all plastics ever made. Science Advances 3(7).
Greene J.,2007. Biodegradation of compostable plastics in green yard-waste compost environment. J Polym Environ. 15,269.
Gulab, H., Jan, M.R., Shah, J., Manos, G., 2010. Plastic catalytic pyrolysis to fuels as tertiary polymer recycling method: effect of process conditions. J. Environ. Sci. Health., Part A . 45, 908-915.
Hu, X., Gholizadeh M., 2019. Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage.Journal of Energy Chemistry. 39,109-143.
Hu, Yunzi., Daoud, Walid A., Fei, Bin., Chen, Lei., Kwan, Tsz Him., Lin, Ki Carol Sze., 2017. Efficient ZnO aqueous nanoparticle catalysed lactide synthesis for poly(lactic acid) fibre production from food waste.Journal of Cleaner Production. 165,157-167.
Huang Y., Gao Y., Zhou H., Sun H., Zhou J., Zhang S., 2018. Pyrolysis of palm kernel shell with internal recycling of heavy oil. Bioresour Technol. 272,77-82.
Ji L., Hervier A., Sablier M., 2006. Study on the pyrolysis of polyethylene in the presence of iron and copper chlorides. Chemosphere. 65,1120-30.
Jung, S. H., Kim, S. J.,Kim, J. S., 2013. The influence of reaction parameters on characteristics of pyrolysis oils from waste high impact polystyrene and acrylonitrile–butadiene–styrene using a fluidized bed reactor.Fuel Processing Technology. 116, 123-129.
Kalargaris, I., Tian, G., Gu, S., 2017. The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy. 131, 179-185.
Kale G., Auras R., Singh S., Narayan R..2007. Biodegradability of polylactide bottles in real and stimulated composting conditions. Polym Test. 26,1049.
Karamanlioglu, M., Preziosi, R., Robson, G.D., 2017. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): a review. Polym. Degrad. Stabil. 137, 122-130.
Karamanlioglu, M.,Robson, G. D., 2013. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polymer Degradation and Stability. 98(10), 2063-2071.
Kim, Y.-M., Park, S., Kang, B. S., Jae, J., Rhee, G. H., Jung, S.-C.,Park, Y.-K., 2018. Suppressed char agglomeration by rotary kiln system with alumina ball during the pyrolysis of Kraft lignin. Journal of Industrial and Engineering Chemistry. 66,72-77.
Kopinke, F. D., Remmler, M., Mackenzie, K., Möder, M., Wachsen, O.,1996. Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid). Polymer Degradation and Stability. 53(3), 329-342.
Lam, Su Shiung., Mahari, Wan AdibahWan., Ok,Yong Sik., Peng, Wanxi., Chong, Cheng TungChongd., Ma, Nyuk Ling., Tsang, Daniel C.W., 2019. Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis. Renewable and Sustainable Energy Reviews. 115, 109359.
Lee Kyong Hwan and Shin Dae Hyun., 2006. A Comparative Study of Liquid Product on Non-Catalytic and Catalytic Degradation of Waste Plastics sing Spent FCC catalyst. Korean J. Chem Eng. 23,209-215.
Li A., Li X., Li S., Ren Y., Chi Y., Yan J., 1999. Pyrolysis of solid waste in a rotary kiln: influence of final pyrolysis temperature on the pyrolysis products. J Anal Appl Pyrol.50,149-62.
Life cycle assessment, LCA. website: wileyonlinelibrary.com.
Lim, L. T., Auras, R., Rubino, M., 2008. Processing technologies for poly(lactic acid). Progress in Polymer Science. 33(8), 820-852.
Lopez A., Marco I. de., Caballero B.M., Laresgoiti M.F., Adrados A., 2011. Influence of Time and Temperature on Pyrolysis of Plastic Wastes in a Semi-Batch Reactor. Chemical Engineering Journal. 173,62-71.
Ma Sijie., Leong Huini., He Limo., Xiong Zhe., Han Hengda., Jiang Long., Wang Yi., Hu Song., Su Sheng., Xiang Jun., 2020. Effects of pressure and residence time on limonene production in waste tires pyrolysis process. Journal of Analytical and Applied Pyrolysis,151.
Ma Zhengzhao., Gao Ningbo., Xie Lei., Li Aimin., 2014. Study of the fast pyrolysis of oilfield sludge with solid heat carrier in a rotary kiln for pyrolytic oil production. Journal of Analytical and Applied Pyrolysis. 105, 183-190.
Malinconico, M., Vink, E.T.H., Cain, A., 2018. Applications of poly(lactic acid) in commodities and specialties. Advances in Polymer Science. Springer Berlin Heidelberg, Berlin, Heidelberg. 282,35-50.
Mastral F.J., Esperanza E., Garcia P., Juste M., 2002. Pyrolysis of High-Density Polyethylene in a Fluidised Bed Reactor. Influence of the Temperature and Residence Time. Journal of Analytical and Applied Pyrolysis. 63,1-15.
Material Economics, P. A., Enkvist, P. Klevnäs (Eds.)., The Circular Economy – a Powerful Force for Climate Mitigation 2018.
McNeill, I. C.,Leiper, H. A., 1985. Degradation studies of some polyesters and polycarbonates—2. Polylactide: Degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polymer Degradation and Stability. 11(4), 309-326.
Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M.,Nizami, A. S., 2016. Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection. 102, 822-838.
Miandad, R., Nizami, A.S., Rehan, M., Barakat, M.A., Khan, M.I., Mustafa, A., Ismail, I.M.I., Murphy, J.D., 2016. Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil.Waste Manag. 58, 250-259.
Miskolczi N., A. Angyal, L. Bartha, I. Valkai., 2009. Fuel by pyrolysis of Waste Plastics from Agricultural and Packaging Sectors in a Pilot Scale Reactor. Fuel Processing Technology. 90,1032 -1040.
Miskolczi, N., 2013. Co-pyrolysis of petroleum based waste HDPE, poly-lactic-acid biopolymer and organic waste. Journal of Industrial and Engineering Chemistry. 19(5), 1549-1559.
Mkhize, N. M., Danon, B., Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Görgens, J. F., 2019. Influence of reactor and condensation system design on tyre pyrolysis products yields. Journal of Analytical and Applied Pyrolysis. 92, 195-202.
Motoyuki Sugano., Akihiro Komatsu., Masanori Yamamoto., Mika Kumagai., Takayuki Shimizu., Katsumi Hirano., Kiyoshi Mashimo., 2009. Liquefaction Process for a Hydrothermally Treated Waste Mixture Containing Plastics. J. Mater Cycles Waste Manag. 11,27-31.
Nafsun, A.I., Herz, F., Specht, E., Komossa, H., Wirtz, S., Scherer, V., Liu, X., 2017. Thermal bed mixing in rotary drums for different operational parameters. Chemical Engineering Science. 160,346-353.
Omura M., T. Tsukegi, Y. Shirai, H. Nishida, T. Endo., 2006. Thermal degradation behavior of poly(lactic acid) in a blend with polyethylene Industrial and Engineering Chemistry Research. 45,2949-2953.
Paula Sangines., María Paz., Francisco Sánchez., Guillermo San Miguel., 2015. Slow pyrolysis of olive stones in a rotary kiln: Chemical and energy characterization of solid, gas, and condensable products. Journal of Renewable and Sustainable Energy, 7,1-13.
Park, K. B., Jeong, Y.-S., Guzelciftci, B., Kim, J.-S., 2018. Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy.166,343-351.
Performance evaluation of environmentally degradable plastic packaging and disposable food service ware. final report June 2007. produced by Chico Research Foundation.
Plastics Europe,website:https://www.plasticseurope.org/application/files/6315/4510/9 658/Plastics_the_facts_2018_AF_web.pdf
Park Sang Shin., Seo Dong Kyun., Lee Sang Hoon., Yu Tae-U., Hwang Jungho., 2012. Study on Pyrolisis Characteristics of Refuse Plastic Fuel Using Lab-Scale Tube Furnace and Thermogravimetric Analysis Reactor. J. of Analytical and Applied Pyrolysis. 97,29-38.
Sangeetha V.H., Deka Harekrishna., Varghese T.O., Nayak S.K.,2016. State of the Art and Future Prospectives of Poly(Lactic Acid) Based Blends and Composites. Polymer Composites.19.
Sedlarik V., Saha N., Sedlarikova J., Saha P.,2008. Biodegradation of blown films based on poly(lactic acid) under natural conditions. Macromol Symp. 272,100.
Seo, Y. H., Lee, K. H., Shin, D. H.,2003. Investigation of catalytic degradation of high-density polyethylene by hydrocarbon group type analysis. Journal of Analytical and Applied Pyrolysis, 70(2), 383-398.
Shadangi, K. P. and Mohanty K., 2015. Co-pyrolysis of Karanja and Niger seeds with waste polystyrene to produce liquid fuel. Fuel,153, 492-498.
Shi, B., Palfery, D., 2010. Enhanced mineralization of PLA meltblown materials due to plasticization. J. Polym. Environ. 18 (2), 122-127.
Silvestre, W. P., Pauletti, G. F., Godinho, M., Baldasso, C.,2018. Fodder radish seed cake pyrolysis for bio-oil production in a rotary kiln system. Chemical Engineering and Processing - Process Intensification. 124, 235-244.
Sintim, H. Y., Bary, A. I., Hayes, D. G., English, M. E., Schaeffer, S. M., Miles, C. A., Flury, M., 2019. Release of micro- and nanoparticles from biodegradable plastic during in situ composting. Science of The Total Environment. 675,686-693.
Sivalingam, G., Madras, G., 2004. Thermal degradation of binary physical mixtures and copolymers of poly(ε-caprolactone), poly(d, l-lactide), poly(glycolide). Polymer Degradation and Stability. 84(3), 393-398.
Solar, J., de Marco, I., Caballero, B.M., Lopez-Urionabarrenechea, A., Rodriguez, N., Agirre, I., Adrados, A., 2016. Influence of temperature and residence time in the pyrolysis of woody biomass waste in a continuous screw reactor.Biomass and Bioenergy. 95,416-423.
Stegen, S., Kaparaju P., 2020. Effect of temperature on oil quality obtained through pyrolysis of sugarcane bagasse.Fuel 276.112-118.
Sun, C., Li, C., Tan, H., Zhang, Y., 2019. Synergistic effects of wood fiber and polylactic acid during co-pyrolysis using TG-FTIR-MS and Py-GC/MS. Energy Conversion and Management. 202, 112212.
Tomokazu Mori., Haruo Nishida., Yoshihito Shirai., Takeshi Endo., 2004. Effects of chain end structures on pyrolysis of poly(-lactic acid) containing tin atoms. Polymer Degradation and Stability. 84(2), 243-251.
Tripathi M., Sahu J.N., Ganesan P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review Renew. Sust. Energ. Rev. 55, 467-481.
Tulashie, Samuel Kofi.,Boadu, Enoch Kofi.,Dapaah, Samue., 2019. Plastic waste to fuel via pyrolysis: A key way to solving the severe plastic waste problem in Ghana. Thermal Science and Engineering Progress. 11, 417-424.
Undri, Andrea., Rosi, Luca., Frediani, Marco., Frediani, Piero., 2014. Conversion of poly(lactic acid) to lactide via microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis. 110, 55-65.
Wang, Zhipu., Liu, Kai., Xie, Like., Zhu, Henan., Ji, Shibo., Shu, Xinqian., Zhang, Yuxiu l., 2019. Effects of residence time on characteristics of biochars prepared via co-pyrolysis of sewage sludge and cotton stalks.Journal of Analytical and Applied Pyrolysis 142.
Weiss, M., Haufe, J., Carus, M., Brandão, M., Bringezu, S., Hermann, B., 2012. A review of the environmental impacts of biobased materials. J. Ind. Ecol. 16 (S1), 169-181.
Wong, S.L., Ngadi, N., Abdullah, T.A.T., Inuwa, I.M., 2015. Current state and future prospects of plastic waste as source of fuel: A review. Renewable and Sustainable Energy Reviews. 50,1167-1180.
Yazdani, E., Hashemabadi, S. H., Taghizadeh, A., 2019. Study of waste tire pyrolysis in a rotary kiln system in a wide range of pyrolysis temperature. Waste Management. 85, 195-201.
Yoshioka T., Grause G., Eger C., Kaminsky W., Okuwaki A., 2004. Pyrolysis of poly(ethylene terephthalate) in a fluidised bed plant. Polym Degrad Stab. 86,499-504.
Zhang ZS., Wu YQ., Li H., Li XG., Gao X., 2018. A simple step-change method to determine mean residence time in rotary kiln and a predictive model at low slope. Powder Technology. 333, 30-37.
Zhang, Y., Ji, G., Ma, D., Chen, C., Wang, Y., Wang, W., Li, A., 2020. Exergy and energy analysis of pyrolysis of plastic wastes in rotary kiln with heat carrier. Process Safety and Environmental Protection. 142,203-211.
Zhang, Yutao., Ji, Guozhao., Chen, Chuanshuai., Wang, Yinxiang., Wang, Weijian., Li, Aimin., 2020.Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Processing Technology 206.
王韻婷,塑膠廢棄物與生質物共同熱裂解之動力學研究,國立高雄第一科技大學,碩士論文,高雄,2014。
行政院環保署,網址: https://recycle.epa.gov.tw/ConvenienceServices/Downloads,2021年。
李兆彥,聚乳酸(Lactic acid)熱安定性之研究,高苑科技大學,碩士論文,高雄,2006。
林文成,聚乳酸(Lactic acid)熱處理之可行性研究,輔英科技大學,碩士論文,高雄,2015。
林協坤,聚乳酸(Lactic acid)(PLA)與回收聚丙烯(RPP)共混物之熱性質、形態學與機械性質及其改質相關研究探討,國立台灣科技大學,碩士論文,臺北,2016。
林柏鋒,江康鈺,簡光勵,呂承翰,都市下水污泥催化裂解衍生之生質油特性評估研究,中華民國環境工程學會2012暨廢棄物處理技術研討會,桃園,2012。
姚彥丞,江康鈺,呂承翰,塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究,中華民國環境工程學會2017廢棄物處理技術研討會,臺北,2017。
許晨霈,稻殼於氣泡式流體化爐床中快速熱解之研究,長庚大學,碩士論文,桃園,2014。
葉獻彬,生物可降解性聚乳酸(Lactic acid)高分子之合成與降解性質探討,國立陽明大學,碩士論文,臺北,2001。
簡聖珉,應用催化裂解技術轉換下水污泥為生質油之可行性研究,逢甲大學,碩士論文,台中,2015
羅政忠,稻殼前處理及其熱解反應動力學之研究,國立中央大學,博士論文,桃園,1998。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2021-6-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明