博碩士論文 108323030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.226.186.58
姓名 金郁翔(Yu-Xiang Jin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以有限元素分析方法預估並量化振動應力消除之效果
(Predicting and Quantifying the Effect of Vibration Stress Relief with Finite Element Analysis)
相關論文
★ 四弦型非對稱光學讀取頭致動器模態共振分析與抑制★ 網路連接儲存裝置熱分析與設計
★ 小型垂直軸風力發電機之有限元素分析★ 平板受聲源作用之振動與輻射聲場分析
★ 壓電吸振器應用於平板的振動與噪音控制★ 主動式吸振器應用於薄板減振與減噪
★ 離散振動系統之分析軟體製作★ 有洞薄方板之動態分析與激振後之聲場
★ 撓性結構之主動振動控制★ 速度與位移回饋式壓電吸振器之減振研究
★ 以LabVIEW為介面之模態測試軟體製作★ 電壓回饋壓電吸振器對平板之振動控制
★ 可調式消音閥的分析與最佳設計★ 旋轉樑的動態分析與壓電吸振器之減振設計
★ 自感式壓電吸振器之設計與應用於矩形板之減振★ 多孔薄方板之振動與聲場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-29以後開放)
摘要(中) 早期金屬加工件殘留應力的消除是使用退火熱處理的方式,但隨著工件尺寸或結構複雜性增加,單憑熱處理無法滿足生產條件,於是,振動應力消除(VSR)逐漸受到關注,它是一種基於低周疲勞理論,藉由材料內部殘留應力與外部負載疊加以產生塑性變形,達到應力重新分布,藉以減少工件內部應力之方法。至目前為止振動應力消除運作機制以及原理尚未明確的建立。在本研究中藉由有限元素模擬方法觀察材料SS400在循環塑性負載下的行為,即使用模擬的方法預估振動應力消除的效果,以達到建立振動應力消除方法的機制。本研究首先利用均勻圓棒模型進行材料參數之選用,並規劃一具缺口平板試片之循環塑性負載實驗,透過有限元素模擬之結果與實驗結果比對,確認所選擇之塑性材料模型與參數之適用性;接著使用具熱預應力之缺口平板試片,進行循環塑性負載模擬,以觀察有預應力之材料在進行循環負載時,循環施力與應力集中效應對於材料行為之影響;最後透過觀察應變變化速率,提供一即時估算並量化應力之變化量之方法。本研究模擬結果經過與實驗結果之比對,可以確立所使用之材料模型與參數之正確性,討論振動應力消除之力學機制,尋找較佳施力分法,並同時提供一種簡易的量化振動應力消除效果之方法
摘要(英) In the early day, the residual stress of metal processing parts was usually eliminated by annealing heat treatment. As the complexity of the metal structure increased, the heat treatment could not meet the production requirements. Vibration stress relief (VSR) has gradually attracted attention. The method of VSR is based on the low cyclic fatigue theory which suggest the reduction of the internal stress by superimposing the residual stress of the workpiece and the external loading to produce plastic deformation for stress redistribution. However, the mechanism of VSR have not clearly be understood so far. This research used, the finite element method to simulate the behavior of material SS400 under cyclic plastic loading, for predicting the effect of vibration stress relief. First, we chose the uniform round rod model to determine the material parameters of Chaboche model. Next, the simulation model of a notched flat piece was adopted because of its characteristic of uniformly distributer stress. The corresponding experiment was also conducted. The results of the finite element simulation were compared with the experiment results to confirm the correctness of the Chaboche model and the material parameters Finally, simulation of applying cyclic plastic load to the notched flat piece with thermal pre-stress was performed. The numerical results can provide the stress-reduction effects of various cyclic loading amplitudes and durations. The method have been proven a good approach to estimate the effectiveness of VSR method.
關鍵字(中) ★ 振動應力消除
★ 平均應力鬆弛
關鍵字(英)
論文目次 目錄
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 X
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 1
1-3 論文架構 4
第二章 金屬材料基本理論 7
2-1 循環塑性負載理論 7
2-1-1 塑性變形 7
2-1-2 應力集中效應 9
2-1-3 硬化行為與包辛格效應 9
2-1-4 材料的循環應力-應變行為 12
2-2 沙博什材料模型(Chaboche model) 15
2-3 殘留應力消除效果檢測 18
第三章 均勻圓棒試片與具缺口平板試片之循環塑性負載模擬與實驗 20
3-1 模擬方法與流程 20
3-2 材料參數與曲線擬合 22
3-3 以有限元素模型進行循環塑性負載模擬與實驗比較 31
3-3-1 以均勻圓棒進行等振幅應變控制實驗與模擬比較 31
3-3-2 以具缺口平板試片進行循環塑性負載實驗與模擬 39
第四章 具缺口試片之熱預應力模擬 44
4-1 模擬方法與流程 44
4-2 具熱預應力之等振幅應力控制的數值模擬 48
4-2-1 循環負載開始方向與預應力方向相同之應力控制 48
4-2-2 循環負載開始方向與預應力方向相反之應力控制 66
4-3 具熱預應力之對稱變振幅之應力控制的數值模擬 74
4-4 利用應變速率估測殘留應力消除效果 79
第五章 結論與未來展望 90
5-1 結論 91
5-2 未來展望 92
參考文獻 93
參考文獻 [1] Budaházy, V. and Dunai, L., "Parameter-refreshed Chaboche model for mild steel cyclic plasticity behavior," Periodica Polytechnica, pp. 139-155, 2013.
[2] Chaboche, J. L., "Constitutive Equation for Cyclic Plasticity and Cyclic Viscoplasticity," International Journal of Plasticity, pp. 247-302, 1989.
[3] Indermohan, H. and Reinhardt, W., "Ratcheting Responses of Strain Hardening Plasticity Models," in Proceedings of the ASME 2011 Pressure Vessels & Piping Division Conference, 2011.
[4] 吳志榮, 胡緒騰, 辛朋朋 且 宋迎東, “基於Chaboche模型的金屬材料穩態循環應力-應變曲線的本構建模方法,” 機械工程材料, pp. 92-95, 2013.
[5] Paranjape, H. M., Stebner, A. P. and Bhattacharya, K., "A macroscopic strain-space model of anisotropic, cyclic plasticity with hardening," International Journal of Mechanical Sciences, vol. 0 00, pp. 1-8, 2018.
[6] Kwofie, S., "Plasticity model for simulation, description and evaluation of vibratory stress relief," Materials Science and Engineering, vol. A 516, pp. 154-161, 2009.
[7] Yang, R., Hao, Y. and Li, S., "Development and application of low-modulus biomedical titanium alloy Ti2448," Trends in Material Science, pp. 225-248, 2011.
[8] Dahlberg, M. and Segle, P., "Evaluation of models for cyclic plastic deformation – A literature study," Swedish Radiation Safety Authority, 2010.
[9] Shimada, Y., Jiao, Y., Kim, J. and Yamada, S., "Effects of Strain-rate on the Hysteretic behavior of Structural Steels," in 15th World Conference on Earthquake Engineering 2012, 2012.
[10] Das, D. and Chakraborti, P. C., "Effect of stress parameters on ratcheting deformation stages of polycrystalline OFHC copper," Fatigue & Fracture of Engineering Materials & Structures, vol. 34, pp. 734-742, 2011.
[11] Novak, J. S., Benasciutti, D., Bona, F. D., Stanojević, A., Luca, A. D. and Raffaglio, Y., "Estimation of Material Parameters in Nonlinear Hardening Plasticity Models and Strain Life Curves for CuAg Alloy," in IOP Conference Series: Materials Science and Engineering, 2016.
[12] Hu, W., Wang, C. H. and Barter, S., "Analysis of Cyclic Mean Stress Relaxation and Strain Ratchetting Behaviour of Aluminium 7050," Defence Techanical Information Center, 1999.
[13] Riccius, J. R. and Haidn, O. J., "Determination of Linear and Nonlinear Parameters of Combustion Chamber Wall Materials," in 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2003.
[14] Ahmadzadeh, G. R. and Varvani-Farahani, A., "Ratcheting assessment of materials based on the modified Armstrong–Frederick hardening rule at various uniaxial stress levels," Fatigue & Fracture of Engineering Materials & Structures, vol. 36(12), pp. 1232-1245, 2013.
[15] Kulkarni, S., Desai, Y. M, Kant, T., Reddy, G.R., Prasad, P., Vaze, K. K. and Gupta, C., "Uniaxial and biaxial ratchetting in piping materials—experiments and analysis," International Journal of Pressure Vessels and Piping, vol. 81, pp. 609-617, 2004.
[16] He, W., Gu, B., Zheng, J. and Shen, R., "Research on High-Frequency Vibratory Stress Relief of Small Cr12MoV Quenched Specimens," Applied Mechanics and Materials, Vols. 157-158, pp. 1157-1161, 2012.
[17] Chen, Y., Liu, B. and Kang, R., "Study of vibratory stress relief effect of quartz flexible accelerometer with FEA method," Journal of Vibroengineering, vol. 15, pp. 784-793, 2013.
[18] Zhao, X. C., Zhang, Y. D., Zhang, H. W. and Wu, Q., "Simulation of vibration stress relief after welding based on FEM," Acta Metallurgica Sinica, vol. 21, pp. 289-294, 2008.
[19] Qian, Z., Chumbley, S., Karakulak, T. and Johnson, E., "The Residual Stress Relaxation Behavior of Weldments During Cyclic Loading," Metallurgical and Materials Transactions A, vol. 44A, pp. 3147-3156, 2013.
[20] Dowling, N. E., Mechanical Behavior of Materials, Fourth ed, Pearson: UK, 1988.
[21] Barber, J.R,, Intermediate Mechanics of Materials, USA: Springer, 2000.
[22] ANSYS Mechanical Advanced Nonlinear Materials, ANSYS Inc,, 2011.
[23] Yang, M.; Pan, Y.; Yuan, F.; Zhu, Y.; Wu, Z., "Back stress strengthening and strain hardening in gradient structure," Materials Research Letters, pp. 145-151, 2016.
[24] Withers, P. J.; Bhadeshia, H. K. D. H., "Residual stress Part 1 - Measurement techniques," Materials Science and Technology, pp. 355-365, 2001.
[25] Gary, S. S., Practical residual stress measurement methods, John Wiley & Sons, 2013.
[26] 林麗娟, “X光繞射原理及其應用,” 工業材料, 編號 86, pp. 100-109, 1994.
[27] 陳宥任, “以有限元素模擬結果評估振動應力消除之效果,” 國立中央大學機械工程學系碩士論文, 2019.
[28] Rao, D., Wang, D., Chen, L. and Ni, C., "The effectiveness evaluation of 314L stainless steel vibratory stress relief by dynamic stress," International Journal of Fatigue, pp. 192-196, 2007.
指導教授 黃以玫(Yi-Mei Haung) 審核日期 2021-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明