博碩士論文 108323058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:3.149.247.69
姓名 紀佳瑜(Jia-Yu Ji)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同鍍層之金屬多孔材 對於質子交換膜燃料電池之抗腐蝕研究
(Research on the corrosion resistant of metal foam with different coatings for Proton Exchange Membrane Fuel Cell)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-1以後開放)
摘要(中) 本研究使用金屬多孔材為質子交換膜燃料電池之流場,金屬多孔材具有高孔隙率、質量輕及導電性佳之特性,且相較於傳統流道不具遮蔽效應。由於燃料電池運作時內部為高濕度及弱酸性之環境,勢必會侵蝕流道進而影響電池壽命,因此需透過表面鍍層處理提升金屬多孔材之抗腐蝕性、導電
性與疏水性等。本研究使用鍍層為氮化鈦、氮化鋯、氮化鉻及石墨烯,並透過表面微觀、接觸角與腐蝕測試分析材料性質,再組成單電池分析性能表現。
金屬多孔材上所有鍍層的接觸角比未塗層的高 28°±1.5°,具有疏水性鍍
層可以輕鬆排出 PEMFC 運作中產生的水產物。腐蝕極化結果顯示所有鍍層均具有抗腐蝕性,但 ZrN 在 80 ℃下顯示出更好的腐蝕穩定性。而在 80 ℃下進行腐蝕測試後與其他鍍層相比,ZrN 接觸角更高,且腐蝕測試前後的表面形態表明,ZrN 顯示出更好的腐蝕穩定性。由 ZrN 組裝的 PEMFC 單電池在 0.6 V 時的電流密度為 1894.6 mA/cm2,比 CrN 高 538.9 mA/cm2。長期腐蝕測試顯示,ZrN 相較其他鍍層具有腐蝕速率較慢之優勢,適合當作腐蝕抑制層,這有利於 PEMFC 的長期運行。
摘要(英) Proton exchange membrane fuel cell (PEMFC) has gained significant attention for clean energy generation in recent days. A porous, light and conductive metal foam is used a flow channel for PEMFC for easy gas transfer and better performance compared to the conventional flow channel. The presence of high humid and weak acidic atmosphere inside the PEMFC corrodes metal foam on long-term operation and further effects the life-time of PEMFC. In this research, we aim to develop a hydrophobic, conductive and corrosion resistance coating on the metal foam for long-term operation of PEMFC. Titanium nitride,
zirconium nitride, chromium nitride and graphene are coated over the porous copper and nickel foam. As developed coatings were characterized to analyze the
surface morphology, contact angle and corrosion polarization test. Further, performance of the PEMFC single cell assembled with various coated metal foams is analyzed.
The contact angle of all the coatings on metal foam is 28ᵒ±1.5ᵒ higher than the uncoated metal foam. Coatings with low surface energy and lower wettability property is coated over the surface of metal foam can offer easy discharge of water product generated in the function of the PEMFC. The corrosion polarization results shows that all the coatings possess corrosion resistance property. But, ZrN shows better corrosion stability among them at a temperature of 80 ᵒC. After the corrosion current density test at 80 ᵒC, the contact angle for ZrN coated on metal
foam is higher compared to the other samples. Also, the surface coating morphological characterization before and after the stability test shows that the ZrN shows better corrosion stability compared to the TiN, CrN and graphene
coatings. The PEMFC single cell assembled with ZrN/nickel outperforms with a current density of 1894.6 mA/cm2
at 0.6 V, which is538.9 mA/cm2 higher compared to the CrN/nickel. This is achieved with easy discharge of water product generated in PEMFC functioning. The long-term corrosion polarization tests shows that ZrN offers higher corrosion resistant compared to the other samples, which is beneficial for long-term operation of PEMFC. A corrosion resistant coating over porous flow channel (nickel foam) is successfully developed in this study is useful for PEMFC operating. This study is useful for the researchers working in fuel cell are to develop a high performance PEMFC.
關鍵字(中) ★ 質子交換膜燃料電池
★ 高低溫腐蝕極化測試
★ 金屬多孔材
關鍵字(英) ★ proton exchange membrane fuel cell
★ flow channel
★ metal foam
★ corrosion resistant coating
★ coatings
論文目次 中文摘要................................................................................................................i
Abstract................................................................................................................ii
誌謝......................................................................................................................iv
目錄....................................................................................................................... v
圖目錄..................................................................................................................ix
表目錄................................................................................................................. xv
符號說明...........................................................................................................xvii
第一章 緒論......................................................................................................... 1
1-1 前言...................................................................................................... 1
1-2 質子交換膜燃料電池 ..................................................................... 4
1-2-1 燃料電池種類.......................................................................... 4
1-2-2 質子交換膜燃料電池工作原理.............................................. 7
1-2-3 質子交換膜燃料電池之組成結構.......................................... 9
1-2-4 燃料電池極化現象................................................................ 14
1-3 電化學交流阻抗基本原理 ........................................................... 17
1-4 研究動機與方向 ........................................................................... 19
第二章 文獻回顧...............................................................................................21
2-1 金屬極板與多孔材流道研究........................................................21
2-2 TiN 鍍層分析 ................................................................................21
2-3 ZrN 鍍層分析................................................................................22
2-4 CrN 鍍層分析................................................................................23
2-5 Graphene 鍍層分析.......................................................................25
2-6 腐蝕之電化學交流阻抗分析........................................................26
2-7 燃料電池之電化學交流阻抗分析 ...............................................27
第三章 實驗方法與設備...................................................................................29
3-1 實驗架構流程................................................................................29
3-2 鍍層之製備....................................................................................30
3-3 表面結構分析................................................................................33
3-3-1 場發射掃描式電子顯微鏡......................................................33
3-3-2 拉曼光譜儀 ..............................................................................33
3-3-3 原子力顯微鏡 ..........................................................................34
3-4 接觸角量測....................................................................................35
3-5 腐蝕極化量測................................................................................37
3-6 燃料電池之各元件介紹................................................................39
3-6-1 膜電極組(Membrane and Electrode Assembly, MEA) ......... 39
3-6-2 矽膠氣密墊片........................................................................ 41
3-6-3 鎳與銅多孔材........................................................................ 42
3-6-4 金屬流道與雙極板................................................................ 44
3-6-5 端板........................................................................................ 44
3-7 燃料電池測試系統 ....................................................................... 45
3-8 電化學交流阻抗分析儀 ............................................................... 49
第四章 結果與討論........................................................................................... 53
4-1 多孔材表面分析 ........................................................................... 53
4-1-1 拉曼光譜儀檢測.................................................................... 54
4-1-2 原子力顯微鏡檢測................................................................ 56
4-1-3 場發射式掃描式電子顯微鏡................................................ 58
4-2 模擬於低溫型質子交換模燃料電池腐蝕極化測試................... 63
4-3 模擬於高溫型質子交換膜燃料電池腐蝕極化測試................... 74
4-4 接觸角量測.................................................................................... 80
4-5 單電池性能測試 ........................................................................... 84
4-5-1 單電池性能量測.................................................................... 84
4-5-2 背壓之單電池性能測試........................................................ 94
4-6 電化學交流阻抗頻譜測試..........................................................100
4-7 長時間操作於低溫型質子交換膜燃料電池 .............................107
4-7-1 長時間腐蝕測試 ..................................................................107
4-7-2 長時間腐蝕電化學交流阻抗頻譜測試..............................109
第五章 結論與未來規劃................................................................................. 112
5-1 結論.............................................................................................. 112
5-2 未來規劃...................................................................................... 113
第六章 參考文獻............................................................................................. 114
附錄一.......................................................................................................122
參考文獻 [1] https://www.ren21.net/gsr-2020/chapters/chapter_02/chapter_02/.
[2] http://www.ema.org.tw/monthlymgz/pdf/41/78-85.pdf.
[3] C. Y. Liu, C. C. Sung, “A review of the performance and analysis of proton exchange membrane electrode assembles,” J. Power Sources, Vol. 220, pp.
348-353, 2012.
[4] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report,” Fuel Cell Today, 2011.
[5] K. Kordesch, G. Simader, “Fuel cells and their applications,” VCH Weinheim, 1996.
[6] https://en.wikipedia.org/wiki/Nafion.
[7] M.V. Williams, E. Begg, L. Bonville, H. Russell–Kunz, “Characterization of Gas Diffusion Layers for PEMFC,” J. Electrochem. Soc, Vol. 151, A1173-A1180, 2004.
[8] 黃鎮江,燃料電池,全華科技圖書股份有限公司,民國九十四年。
[9] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wang, C.I. Lee, C.C. Yang and S.K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor,” Int. J. Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
[10] C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang and S.K. Lo, “A PEM fuel cell with metal foam as flow distributor,” Energy Convers., Vol. 62, pp. 14-21, 2012.
[11] M. S. Hossain, B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells,” J. Power Sources, Vol. 295, pp. 275-291, 2015.
[12] D. Zhang, L. Duan, L. Guo, Z. Wang, J. Zhao, W. H. Tuan, K. Niihara, “TiNcoated titanium as the bipolar plate for PEMFC by multi-arc ion plating,” Int. J. Hydrogen Energy, Vol. 36, pp. 9155-9161, 2011.
[13] S. P. Mani, A. Srinivasan, N. Rajendran, “Effect of nitrides on the corrosion behaviour of 316L SS bipolar plates for Proton Exchange Membrane Fuel Cell (PEMFC),” Int. J. Hydrogen Energy, Vol. 40, pp. 3359-3369, 2015.
[14] S. Jannat, H. Rashtchi, M. Atapour, M. A. Golozar, H. Elmkhah, M. Zhiani, “Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells,” J. Power Sources, Vol. 435,226818, 2019.
[15] W. J. Chou, G. P. Yu, J. H. Huang, “Corrosion resistance of ZrN films on AISI 304 stainless steel substrate,” Surf. Coat. Technol., Vol. 167, pp. 59-
67, 2003.
[16] M. F. Peker, Ö. N. Cora, M. Koç, “Investigations on the variation of corrosion and contact resistance characteristics of metallic bipolar plates manufactured under long-run conditions,” Int. J. Hydrogen Energy, Vol. 36, pp. 15427-15436, 2011.
[17] J. Xu, S. Xu, P. Munroe, Z. H. Xie, “A ZrN nanocrystalline coating for polymer electrolyte membrane fuel cell metallic bipolar plates prepared by reactive sputter deposition,” RSC Advances, Vol. 5, pp. 67348-67356, 2015.
[18] L. Wang, D. O. Northwood, X. Nie, J. Housden, E. Spain, A. Leyland, A. Matthews, “Corrosion properties and contact resistance of TiN, TiAlN and CrN coatings in simulated proton exchange membrane fuel cell
environments,” J. Power Sources, Vol. 195, pp. 3814-3821, 2010.
[19] K. Feng, Z. Li, H. Sun, L. Yu, X. Cai, Y. Wu, P. K. Chu, “C/CrN multilayer coating for polymer electrolyte membrane fuel cell metallic bipolar plates,”
J. Power Sources, Vol. 222, pp 351-358, 2013.
[20] R. Li, Y. Cai, K. Wippermann, W. Lehnert, “Bilayer CrN/Cr coatingmodified 316L stainless steel bipolar plates for high temperature polymer electrolyte fuel cells,” J. Power Sources, Vol. 434, pp. 226718, 2019.
[21] U. Mogera, N. Kurra, D. Radhakrishnan, C. Narayana, G. U. Kulkarni, “Low cost, rapid synthesis of graphene on Ni: An efficient barrier for corrosion and thermal oxidation,” Carbon, Vol. 78, pp. 384-391, 2014.
[22] N. W. Pu, G. N. Shi, Y. M. Liu, X. Sun, J. K. Chang, C. L. Sun, M. D. Ger, C. Y. Chen, P. C. Wang, Y. Y. Peng, C. H. Wu, S. Lawes, “Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates,” J. Power Sources, Vol. 282, pp. 248-256, 2015.
[23] Y. H. Lee, S. M. Li, C. J. Tseng, C. Y. Su, S. C. Lin, J. W. Jhuang, “Graphene as corrosion protection for metal foam flow distributor in proton exchange membrane fuel cells,” Int. J. Hydrogen Energy, Vol. 42, pp. 22201-22207, 2017.
[24] L. Wang, L. Li, H. Liu, S. Wang, H. Fang, H. Gao, K. Gao, Y. Zhang, J. Sun, J. Yan, “Polylaminate TaN/Ta coating modified ferritic stainless steel bipolar plate for high temperature proton exchange membrane fuel cell,” J.Power Sources, Vol. 399, pp. 343-349, 2018.
[25] M. Eikerling, A.A. Kornyshev, “Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells,” J. Electroanal. Chem., Vol.
475, pp. 107-123, 1999.
[26] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I : Stack impedance,” J. Power Sources, Vol. 161, pp. 908-928, 2006.
[27] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part II:Individual cell impedance,” J. Power Sources, Vol. 161, pp. 929-937, 2006.
[28] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, “AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes,” Int. J. Hydrogen Energy, Vol. 32, pp. 4358-4364, 2007.
[29] R. Chen, Y. Qin, Q. Du, J Peng, “Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell,” SAE International by University of British Columbia, Monday, September 24, 2018.
[30] K. M. A. Shurman, H. Naseem, ”CVD Graphene Growth Mechanism on Nickel Thin Films,” comsol conference, 2014.
[31] R. S. Sharbidre, C. J. Lee, S. G. Hong, J. K. Ryu, T. N. Kim, “Comparison of Existing Methods to Identify the Number of Graphene Layers,” Korean J. Materials Research, Vol. 26, pp. 704-708, 2016.
[32] E. E. Kahveci, I. Taymaz, “Experimental study on performance evaluation of PEM fuel cell by coating bipolar plate with materials having different contact angle,” Fuel, Vol. 253, pp. 1274-1281, 2019.
[33] A. Herescu1, J. S. Allen, “Liquid Holdup in the Bipolar Plate Channels of a PEM Fuel Cell,” ECS, Vol. 26, pp. 219-225, 2009.
[34] R. A.Antunes, M. C. L.Oliveira, G. Ett, V. Ett, “Corrosion of metal bipolar plates for PEM fuel cells: A review,” Int. J. Hydrogen Energy, Vol.35, pp. 3632-3647, 2010.
[35] Y. Leng, P. Ming, D. Yang, C. Zhang, “Stainless steel bipolar plates for proton exchange membrane fuel cells:Materials, flow channel design and forming processes,” J. Power Sources, Vol. 451, pp. 227783, 2020.
[36] https://www.researchgate.net/figure/Nyquist-plot-of-PEMFC17_fig3_327732491.
[37] https://www.metrohmautolab.com/Products/Echem/NSeriesFolder/PGSTAT302N.
[38] https://technews.tw/2019/04/03/gogoro-new-battery-in-summer-2019/.
[39] 潘思如,高分子聚合物製備石墨烯,國立臺灣師範大學物理研究所碩士論文,民國一百零一年。
[40] X. Li, W. Cai, L. Colombo, R. S. Ruoff, “Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling,” Nano Letters, Vol. 9, pp. 4268-4272, 2009.
[41] Q. Yu, et al, “Graphene segregated on Ni surfaces and transferred to insulators,” AIP, Vol, 93, pp. 113103, 2008.
[42] http://webcache.googleusercontent.com/search?q=cache:ieh8_vpu5ugJ:w
ww.etop.org.tw/index.php%3Fc%3Dadm11252%26m%3DgetReportFile%26d%3Dadm%26i%3D103525+&cd=11&hl=zh-TW&ct=clnk&gl=tw.
[43] M. F. Khan, A. Y. Adesina, Z. M. Gasem, “Electrochemical and electrical resistance behavior of cathodic arc PVD TiN, CrN, AlCrN, and AlTiN coatings in simulated proton exchange membrane fuel cell environment,”
Materials and Corrosion, Vol. 70, pp. 281-292, 2018.
[44] J. Jin, Z. He, X. Zhao, “Effect of Al content on the corrosion resistance and conductivity of metal nitride coating in the cathode environment of PEMFCs,” Materials Chemistry and Physics, Vol. 245, pp. 122739, 2020.
[45] Y. Wang, D. O. Northwood, “An investigation into polypyrrole-coated 316L stainless steel as a bipolar plate material for PEM fuel cells,” J. Power Sources, Vol. 163, pp. 500-508, 2006.
[46] 黃俊傑,交流阻抗法研究含氯環境下苯駢三氮五圜對銅之腐蝕抑制行為,元智大學化學工程學系碩士論文,民國九十一年。
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明