博碩士論文 104326602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.144.12.205
姓名 鄭明敏(Minh Man Trinh)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱
(Application of Catalytic Pyrolysis for Reducing PCDD/Fs Contents Generated from Incineration)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) 焚化是台灣廢棄物主要的處理方式,該過程的最終產物為底渣和飛灰(FA)。因為富含高濃度的戴奧辛(PCDDs)及呋喃(PCDFs),台灣 24 座大型都市垃圾焚化爐產生的飛灰無法再利用或回收,而進入掩埋場。因此,焚化過程產生的飛灰量不斷增加,加上垃圾掩埋場空間不足,引起了公眾的強烈關注。本研究的重點為透過催化熱裂解過程去除都市垃圾焚化爐產生之飛灰中的戴奧辛及呋喃。由於氯化物含量可能會影響熱裂解過程之戴奧辛及呋喃的減量效率,因此採用水洗和碳酸水洗滌兩種預處理方法來降低飛灰中的氯化物含量,並評估氯化物含量對戴奧辛及呋喃減量的影響。在350oC溫度下熱裂解1小時,對未水洗飛灰(含23.4%氯)、水洗飛灰(含7.10%氯)及碳酸水(含2.70%氯)之戴奧辛及呋喃去除效率分別為96.7%、98.5%和96.2%。此外,觸媒熱裂解顯示相當高的戴奧辛及呋喃去除效率。具體而言,以Pd/γ-Al2O3及Pd/C為觸媒,在 350oC溫度下熱裂解15 分鐘,戴奧辛及呋喃的去除效率分別為 64.1% 及 91.3%,明顯高於熱裂解(35.4%)。與γ-Al2O3作為熱裂解系統觸媒載體相比,活性碳被證明具有更高的活性。本研究製備各種過渡金屬觸媒並應用於觸媒熱裂解系統。結果說明以Fe/C、Co/C、Ni/C和Cu/C為觸媒,在350oC溫度下熱裂解15分鐘,戴奧辛及呋喃的去除效率分別為91.1%、91.1%、93.7%和94.5%。此外,以尺寸為10~18 mesh、20~40 mesh、70~120 mesh和120~200 mesh之觸媒經過行熱裂解後,飛灰中戴奧辛及呋喃濃度分別為235、231、101和77.5 pg I-TEQ/g。表明戴奧辛及呋喃濃度隨著觸媒尺寸的減小而逐漸降低。 為瞭解觸媒熱裂解去除戴奧辛及呋喃的機制,需要定義所有 210 種戴奧辛及呋喃同源物的濃度和轉化。本研究成功開發具有成本效益的淨化方法,減少分析一至八氯戴奧辛及呋喃所需的溶劑體積及時間。在未經處理的飛灰中,一至三氯戴奧辛及呋喃同源物佔 63.8%,而四至八氯戴奧辛及呋喃同源物佔總戴奧辛及呋喃的 36.2%。經熱裂解後,一至三氯戴奧辛及呋喃同源物占比上升至88.3%,而四至八氯戴奧辛及呋喃同源物占比則減少至11.7%。在熱裂解過程中,一至三氯戴奧辛的濃度增加130 pmol/g,而四至八氯戴奧辛的濃度減少74.7 pmol/g。結果指出其他的熱裂解過程中也可以形成一至三氯戴奧辛,而不僅是從四至八氯戴奧辛的脫氯。另一方面,熱裂解後一氯呋喃的濃度增加88.6 pmol/g,而二至八氯呋喃的濃度減少478 pmol/g。結果指出熱裂解過程中大部分多氯呋喃的減少是由於高度氯化到低氯化同源物的脫氯,且多氯呋喃的最終產物將是非氯化二苯呋喃。透過各種前驅物(氯苯酚、氯苯等)在飛灰表面縮合可形成戴奧辛及呋喃。因此,在熱裂解系統中加入觸媒,這些前驅物可分解成其他化合物而非形成戴奧辛及呋喃。與熱裂解相比,抑制前驅物冷凝可能是觸媒裂解去除效率更高的主要原因
摘要(英) Incineration is considered as the major method for waste treatment in Taiwan and the residues of this process are bottom ash and fly ash (FA). Due to the high concentration of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-furans (PCDFs), fly ash generated from 24 large-scale municipal waste incinerators (MWIs) in Taiwan can not be reused or recycled and is finally subjected to sanitary landfill. Therefore, the increasing amount of fly ash generated from incineration process combines with the lack of landfill space has caused intense public concerns. This study focuses on the removal of PCDD/Fs in fly ash generated from MWIs via catalytic pyrolysis process. Since the chloride content may affect PCDD/Fs reduction efficiency via pyrolysis, two pretreatment methods, i.e., water washing and carbonated water washing, are applied to reduce the chloride content in FA and the effect of chloride content on PCDD/Fs reduction achieved with pyrolysis is evaluated. Being pyrolyzed at temperature of 350oC for 1 hour, the TEQ removal efficiencies of 96.7%, 98.5% and 96.2% for PCDD/Fs are achieved for unwashed fly ash (23.4% Cl), water washed fly ash (7.10% Cl) and carbonated water washed fly ash (2.70% Cl), respectively. In addition, catalytic pyrolysis reveals significantly high PCDD/Fs TEQ removal efficiencies. Specifically, the removal efficiencies of PCDD/Fs achieved are 64.1% and 91.3% under pyrolysis at 350oC in 15 minutes with Pd/γ-Al2O3 and Pd/C as catalyst, respectively, which are significantly higher than that of thermal pyrolysis (35.4%). Activated carbon is proven to obtain higher activity compared with γ-Al2O3 as catalyst support in pyrolysis system. Various transition metals catalyst are prepared and applied in the catalytic pyrolysis system developed. The results indicate that PCDD/Fs removal efficiencies via pyrolysis at 350oC in 15 minutes with Fe/C, Co/C, Ni/C and Cu/C as catalysts are 91.1%, 91.1%, 93.7% and 94.5%, respectively. It indicates that PCDD/Fs concentrations decrease gradually with the reduction of catalyst size. Moreover, PCDD/Fs concentrations in FA are measured as 235, 231, 101 and 77.5 pg I-TEQ/g after being pyrolyzed with Ni/C catalyst sizes of 10-18 mesh, 20-40 mesh, 70-120 mesh and 120-200 mesh, respectively. In order to understand the mechanism of PCDD/Fs removal with catalytic pyrolysis, concentration and transformation of all 210 PCDD/Fs congeners need to be defined. A cost-effective clean-up method is successfully developed to reduce the solvent volume and working time required to analyze mono- to octa-CDD/Fs. In untreated FA, mono- to tri-CDD/Fs homologues account for 63.8% while tetra- to octa-CDD/Fs homologues account for 36.2% of total PCDD/Fs. After thermal pyrolysis, the contribution of mono- to tri-CDD/Fs homologues is increased to 88.3% while that of tetra- to octa-CDD/Fs homologues is reduced to 11.7%. During thermal pyrolysis, the concentrations of mono- to tri-CDDs increase by 130 pmol/g while those of tetra- to octa-CDDs decrease by 74.7 pmol/g. The results also indicate that 42.5% mono- to tri-CDDs measured in treated FA can be formed during thermal pyrolysis from other pathway rather than merely via dechlorination from tetra- to octa-CDDs. On the other hand, the concentration of mono-CDFs increases by 88.6 pmol/g while those of di- to octa-CDFs decrease by 478 pmol/g. This result indicates that most of PCDFs reduction during thermal pyrolysis is due to dechlorination of highly chlorinated congeners to low chlorinated congeners and the final product of PCDFs would be non-chlorinated dibenzofuran if the reaction time is sufficient. It is suggested that PCDD/Fs can be formed via the condensation of various precursors such as chlorophenol and chlorobenzene on FA surface. Thus, with the presence of appropriate catalyst in pyrolysis system, these precursors can be decomposed into other chemical compounds instead of forming PCDD/Fs. Inhibition of precursor condensation could be the main reason for the higher PCDD/F removal efficiency achieved with catalytic pyrolysis compared with thermal pyrolysis.
關鍵字(中) ★ 戴奧辛
★ 飛灰
★ 垃圾焚化
★ 熱裂解
★ 觸媒
關鍵字(英) ★ PCDD/Fs
★ Pyrolysis
★ Fly ash
★ Municipal waste incineration
★ Catalyst
論文目次 List of Tables. iv
List of Figures . v
Abstract . viii
Chapter 1 Introduction . 1
1.1 Background and motivation . 1
1.2 Research objectives . 5
Chapter 2 Literature review . 8
2.2 Physicochemical properties of PCDD/Fs . 10
2.3 PCDD/Fs formation in fly ash during waste incineration . 12
2.4 Existing treatment technologies for reducing PCDD/Fs in fly ash . 13
2.5 Principles of catalytic reaction . 15
2.6 Concept of catalytic pyrolysis for PCDD/Fs removal . 18
Chapter 3 Experimental . 21
3.1 Fly ash washing . 21
3.2 Characterization of fly ash and catalysts . 22
3.3 Chloride content measurement . 22
3.4 Heavy metal leachability . 23
3.5 Thermal pyrolysis (Hagenmaier) process . 23
ii
3.6 Catalytic pyrolysis with Palladium . 24
3.7 Preparation of transition metal catalysts . 25
3.8 Standard 2,3,7,8- PCDD/Fs extraction, cleanup and analysis . 26
3.9 Developed mono-octa PCDD/Fs clean-up procedure .. 27
3.10 Dechlorination rate . 28
Chapter 4 Results and discussion . 31
4.1 Chloride and heavy metal contents in fly ash . 31
4.2 Removal efficiencies of 2.3.7.8-PCDD/Fs achieved at different pyrolysis temperatures 33
4.3 Effects of activated carbon and γ-Al2O3 on PCDD/Fs catalytic pyrolysis . 39
4.4 Decay rates of 2,3,7,8-PCDD/Fs in FA and WWFA during thermal pyrolysis and catalytic pyrolysis. 42
4.5 Effect of transition metal catalyst on 2,3,7,8-PCDD/Fs removal. 47
4.6 Transformation of mono- to octa-CDD/Fs in FA during thermal pyrolysis . 49
4.7 Effect of different catalyst on FA pyrolysis . 53
4.9 Effect of catalyst sizes on mono- to octa-CDD/Fs pyrolysis . 59
4.10 Catalyst stability . 60
4.11 Dechlorination rate constants of mono- to octa-CDD/Fs . 62
4.12 Mechanism of catalytic pyrolysis . 67
Chapter 5 Conclusions and recommendations. 72
5.1 Conclusions . 72
5.2 Recommendations . 73
References . 75
Appendix . 86
參考文獻 1. European Envinronment Agency, European Union emission inventory report 1990–2014 under the UNECE convention on long-range transboundary air pollution. 2016.
2. Llobet, J.M., Marti-Cid, R., Castell, V., and Domingo, J.L., Significant decreasing trend in human dietary exposure to PCDD/PCDFs and PCBs in Catalonia, Spain. Toxicol. Lett., 2008. 178(2): p. 117-26.
3. McKay, G., Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chem. Eng. J., 2002. 86(3): p. 343-368.
4. Hu, S.H., Stabilization of heavy metals in municipal solid waste incineration ash using mixed ferrous/ferric sulfate solution. J. Hazard. Mater., 2005. 123(1): p. 158-164.
5. Taiwan-EPA, Solid Waste Statistics. https://www.epa.gov.tw/ct.asp?xItem=61195&CtNode=35638&mp=epaen, 2020.
6. Dou, X.M., Ren, F., Nguyen, M.Q., Ahamed, A., Yin, K., Chan, W.P., and Chang, V.W.C., Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew. Sustain. Energy Rev., 2017. 79: p. 24-38.
7. Mangialardi, T., Sintering of MSW fly ash for reuse as a concrete aggregate. J. Hazard. Mater., 2001. 87(1): p. 225-239.
8. Park, Y.J. and Heo, J., Vitrification of fly ash from municipal solid waste incinerator. J. Hazard. Mater., 2002. 91(1): p. 83-93.
9. Wang, L., Chen, Q., Jamro, I.A., Li, R.D., and Baloch, H.A., Accelerated co-precipitation of lead, zinc and copper by carbon dioxide bubbling in alkaline municipal solid waste incinerator (MSWI) fly ash wash water. RSC Advances, 2016. 6(24): p. 20173-20186.
76
10. Colangelo, F., Messina, F., and Cioffi, R., Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates. J. Hazard. Mater., 2015. 299: p. 181-191.
11. Chen, C.G., Sun, C.J., Gau, S.H., Wu, C.W., and Chen, Y.L., The effects of the mechanical–chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste. Waste Manage., 2013. 33(4): p. 858-865.
12. Sukandar, Padmi, T., Tanaka, M., and Aoyama, I., Chemical stabilization of medical waste fly ash using chelating agent and phosphates: Heavy metals and ecotoxicity evaluation. Waste Manage., 2009. 29(7): p. 2065-2070.
13. Environmental Agency, Quality protocol poultry litter. End of waste criteria for the production and use of treated ash from the incineration of poultry litter, feathers and straw. Waste & Resources Action Programme. 2012.
14. Liu, G.R., Liu, W.B., Cai, Z.W., and Zheng, M.H., Concentrations, profiles, and emission factors of unintentionally produced persistent organic pollutants in fly ash from coking processes. J. Hazard. Mater., 2013. 261: p. 421-426.
15. Wikström, E. and Marklund, S., Secondary formation of chlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, benzenes, and phenols during msw combustion Environ. Sci. Technol., 2000. 34(4): p. 604-609.
16. Li, Y.C., Yang, Y., Yu, G., Huang, J., Wang, B., Deng, S.B., and Wang, Y.J., Emission of unintentionally produced persistent organic pollutants (UPOPs) from municipal waste incinerators in China. Chemosphere, 2016. 158: p. 17-23.
77
17. Weber, R., Sakurai, T., and Hagenmaier, H., Formation and destruction of PCDD/PCDF during heat treatment of fly ash samples from fluidized bed incinerators. Chemosphere, 1999. 38(11): p. 2633-2642.
18. Altarawneh, M., Dlugogorski, B.Z., Kennedy, E.M., and Mackie, J.C., Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Prog. Energy Combust. Sci., 2009. 35(3): p. 245-274.
19. Li, B.Y., Ou, L.W., Dang, Q., Meyer, P., Jones, S., Brown, R., and Wright, M., Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production. Bioresour. Technol., 2015. 196: p. 49-56.
20. Hoornweg, D. and Bhada-Tata, P., What a waste: a global review of solid waste management. Urban Dev. Ser. Knowl. Pap., 2012. 15: p. 87-88.
21. Quina, M.J., Bordado, J.C., and Quinta-Ferreira, R.M., Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Manage., 2008. 28(11): p. 2097-2121.
22. Quann, R.J., Neville, M., and Sarofim, A.F., A Laboratory Study of the Effect of Coal Selection on the Amount and Composition of Combustion Generated Submicron Particles. Combustion Sci. Technol., 1990. 74(1-6): p. 245-265.
23. McElroy, M.W., Carr, R.C., Ensor, D.S., and Markowski, G.R., Size Distribution of Fine Particles from Coal Combustion. Science, 1982. 215(4528): p. 13-19.
24. Lind, T., Vaimari, T., Kauppinen, E., Nilsson, K., Sfiris, G., and Maenhaut, W., ASH formation mechanisms during combustion of wood in circulating fluidized beds. Proc. Combust. Inst., 2000. 28(2): p. 2287-2295.
78
25. Quina, M.J., Bontempi, E., Bogush, A., Schlumberger, S., Weibel, G., Braga, R., Funari, V., Hyks, J., Rasmussen, E., and Lederer, J., Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy. Sci. Total Environ., 2018. 635: p. 526-542.
26. Mackay, D., Shiu, W.Y., Ma, K.C., and Lee, S.C., Handbook of physical-chemical properties and environmental fate for organic chemicals, second edition, ed. 2. 2006: CRC Press.
27. Wang, Y.H. and Wong, P.K., Mathematical relationships between vapor pressure, water solubility, Henry′s law constant, n-octanol/water partition coefficent and gas chromatographic retention index of polychlorinated-dibenzo-dioxins. Water Res., 2002. 36(1): p. 350-355.
28. Wang, Y.H. and Wong, P.K., Correlation relationships between physico-chemical properties and gas chromatographic retention index of polychlorinated-dibenzofurans. Chemosphere, 2003. 50(4): p. 499-505.
29. Harner, T., Green, N.J.L., and Jones, K.C., Measurements of octanol−air partition coefficients for pcdd/fs: A tool in assessing air−soil equilibrium status. Environ. Sci. Technol., 2000. 34(15): p. 3109-3114.
30. Program, U.N.D., What are POPs? 2020.
31. Schecter, A., Birnbaum, L., Ryan, J.J., and Constable, J.D., Dioxins: An overview. Environ. Res., 2006. 101(3): p. 419-428.
32. Wang, P., Hu, Y.A., and Cheng, H.F., Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China. Environ. Pollut., 2019. 252: p. 461-475.
79
33. Zhang, J.J., Zhang, S.G., and Liu, B., Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review. J. Clean. Prod., 2020. 250.
34. Fabricius, A.-L., Renner, M., Voss, M., Funk, M., Perfoll, A., Gehring, F., Graf, R., Fromm, S., and Duester, L., Municipal waste incineration fly ashes: from a multi-element approach to market potential evaluation. Environ. Sci. Eur., 2020. 32(1): p. 88.
35. Clavier, K.A., Paris, J.M., Ferraro, C.C., and Townsend, T.G., Opportunities and challenges associated with using municipal waste incineration ash as a raw ingredient in cement production – a review. Resour. Conserv. Recycl., 2020. 160: p. 104888.
36. Zou, D., Chi, Y., Fu, C., Dong, J., Wang, F., and Ni, M., Co-destruction of organic pollutants in municipal solid waste leachate and dioxins in fly ash under supercritical water using H2O2 as oxidant. J. Hazard. Mater., 2013. 248-249: p. 177-184.
37. Cagnetta, G., Hassan, M.M., Huang, J., Yu, G., and Weber, R., Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling. Sci. Rep., 2016. 6(1): p. 22925.
38. Nam, I.H., Kim, Y.M., Murugesan, K., Jeon, J.R., Chang, Y.Y., and Chang, Y.S., Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst. J. Hazard. Mater., 2008. 157(1): p. 114-121.
39. Hagenmaier, H., Kraft, M., Brunner, H., and Haag, R., Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environ. Sci. Technol., 1987. 21(11): p. 1080-1084.
80
40. Ishida, M., Shiji, R., Nie, P., Nakamura, N., and Sakai, S.-i., Full-scale plant study on low temperature thermal dechlorination of PCDDs/PCDFs in fly ash. Chemosphere, 1998. 37(9): p. 2299-2308.
41. Behnisch, P.A., Hosoe, K., Shiozaki, K., Ozaki, H., Nakamura, K., and Sakai, S., Low-temperature thermal decomposition of dioxin-like compounds in fly ash: Combination of chemical analysis with in vitro bioassays (EROD and DR-CALUX). Environ. Sci. Technol., 2002. 36(23): p. 5211-5217.
42. Lundin, L. and Marklund, S., Thermal degradation of PCDD/F in municipal solid waste ashes in sealed glass ampules. Environ. Sci. Technol., 2005. 39(10): p. 3872-3877.
43. Lundin, L. and Marklund, S., Thermal degradation of PCDD/F, PCB and HCB in municipal solid waste ash. Chemosphere, 2007. 67(3): p. 474-481.
44. Deng, D., Qiao, J., Liu, M., Kołodyńska, D., Zhang, M., Dionysiou, D.D., Ju, Y., Ma, J., and Chang, M.B., Detoxification of municipal solid waste incinerator (MSWI) fly ash by single-mode microwave (MW) irradiation: Addition of urea on the degradation of dioxin and mechanism. J. Hazard. Mater., 2019. 369: p. 279-289.
45. Ju, Y., Zhang, K., Yang, T., Deng, D., Qiao, J., Wang, P., You, Y., Du, L., Chen, G., Kołodyńska, D., and Dionysiou, D.D., The influence of a washing pretreatment containing phosphate anions on single-mode microwave-based detoxification of fly ash from municipal solid waste incinerators. Chem. Eng. J., 2020. 387: p. 124053.
46. Hung, P.C., Chen, Q.H., and Chang, M.B., Pyrolysis of MWI fly ash - Effect on dioxin-like congeners. Chemosphere, 2013. 92(7): p. 857-863.
81
47. Mortensen, P.M., Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G., and Jensen, A.D., A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal., A, 2011. 407(1): p. 1-19.
48. Zhao, H.Y., Li, D., Bui, P., and Oyama, S.T., Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl. Catal., A, 2011. 391(1): p. 305-310.
49. Chiang, H. and Bhan, A., Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J. Catal., 2010. 271(2): p. 251-261.
50. Yang, Z., Tian, S., Ji, R., Liu, L., Wang, X., and Zhang, Z., Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration. Waste Manage., 2017. 68: p. 221-231.
51. Chen, W.S., Chang, F.C., Shen, Y.H., Tsai, M.S., and Ko, C.H., Removal of chloride from MSWI fly ash. J. Hazard. Mater., 2012. 237: p. 116-120.
52. Chen, C.K., Lin, C., Wang, L.C., and Chang Chien, G.P., The size distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in the bottom ash of municipal solid waste incinerators. Chemosphere, 2006. 65(3): p. 514-520.
53. Nakano, T. and Weber, R., Analysis of low chlorinated PCDD/F - Isomer specific analysis of MCDF to T3CDF on DB-5MS-column and some aspects regarding air sampling. Organohalogen Compounds, 2001.
54. Fishman, V.N., Martin, G.D., and Wilken, M., Retention time profiling of all 136 tetra- through octa- chlorinated dibenzo-p-dioxins and dibenzofurans on a variety of Si-Arylene gas chromatographic stationary phases. Chemosphere, 2011. 84(7): p. 913-922.
82
55. Bacher, R., Swerev, M., and Ballschmiter, K., Profile and pattern of monochloro- through octachlorodibenzodioxins and dibenzofurans in chimney deposits from wood burning. Environ. Sci. Technol., 1992. 26(8): p. 1649-1655.
56. Jansson, S. and Andersson, P.L., Relationships between congener distribution patterns of PCDDs, PCDFs, PCNs, PCBs, PCBzs and PCPhs formed during flue gas cooling. Sci. Total Environ., 2012. 416: p. 269-275.
57. Weidemann, E. and Lundin, L., Behavior of PCDF, PCDD, PCN and PCB during low temperature thermal treatment of MSW incineration fly ash. Chem. Eng. J., 2015. 279: p. 180-187.
58. Trinh, M.M. and Chang, M.B., Catalytic pyrolysis: New approach for destruction of POPs in MWIs fly ash. Chem. Eng. J., 2021. 405: p. 126718.
59. Pedersen, A.J., Ottosen, L.M., and Villumsen, A., Electrodialytic removal of heavy metals from different fly ashes - Influence of heavy metal speciation in the ashes. J. Hazard. Mater., 2003. 100(1-3): p. 65-78.
60. Kang, D., Son, J., Yoo, Y., Park, S., Huh, I.-S., and Park, J., Heavy-metal reduction and solidification in municipal solid waste incineration (MSWI) fly ash using water, NaOH, KOH, and NH4OH in combination with CO2 uptake procedure. Chem. Eng. J., 2020. 380: p. 122534.
61. Wei, G.X., Liu, H.Q., Zhang, R., Zhu, Y.W., and Xu, X., Mass concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and heavy metals in different size fractions of hospital solid waste incinerator fly ash particles. Aerosol Air Qual. Res., 2016. 16(7): p. 1569-1578.
83
62. Kida, A., Noma, Y., and Imada, T., Chemical speciation and leaching properties of elements in municipal incinerator ashes. Waste Manage., 1996. 16(5): p. 527-536.
63. McCafferty, E. and Wightman, J.P., Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal., 1998. 26(8): p. 549-564.
64. Kutz, F.W., Barnes, D.G., Bottimore, D.P., Greim, H., and Bretthauer, E.W., The international toxicity equivalency factor (I-TEF) method of risk assessment for complex mixtures of dioxins and related compounds. Chemosphere, 1990. 20(7): p. 751-757.
65. Chen, Z., Mao, Q., Lu, S., Buekens, A., Xu, S., Wang, X., and Yan, J., Dioxins degradation and reformation during mechanochemical treatment. Chemosphere, 2017. 180: p. 130-140.
66. Thuan, N.T. and Chang, M.B., Investigation of the degradation of pentachlorophenol in sandy soil via low-temperature pyrolysis. J. Hazard. Mater., 2012. 229: p. 411-418.
67. Uzgiris, E.E., Edelstein, W.A., Philipp, H.R., and Timothy Iben, I.E., Complex thermal desorption of PCBs from soil. Chemosphere, 1995. 30(2): p. 377-387.
68. Bond, G., Heterogeneous catalysis principles and applications. 1982: Oxford, Clarendon Press.
69. Martin-Martinez, M., Álvarez-Montero, A., Gómez-Sainero, L.M., R.T.Baker, Palomar, J., Omar, S., Eser, S., and Rodriguez, J.J., Deactivation behavior of Pd/C and Pt/C catalysts in the gas-phase hydrodechlorination of chloromethanes: Structure–reactivity relationship. Appl. Catal., B, 2015. 162: p. 532-543.
70. Liu, Y.H., Yang, F.L., Chen, J.W., Gao, L.N., and Chen, G.H., Linear free energy relationships for dechlorination of aromatic chlorides by Pd/Fe. Chemosphere, 2003. 50(10): p. 1275-1279.
84
71. Kim, J.H., Tratnyek, P.G., Kim, J.H., and Chang, Y.S., Modeling the reductive dechlorination of polychlorinated dibenzo-p-dioxins: Kinetics, pathway, and equivalent toxicity. Environ. Sci. Technol., 2009. 43(14): p. 5327-5332.
72. Liu, M.C., Chang, S.H., and Chang, M.B., Catalytic hydrodechlorination of PCDD/Fs from condensed water with Pd/gamma-Al2O3. Chemosphere, 2016. 154: p. 583-589.
73. Chang, M.B., Fu, C.W., and Tsai, C.L., Effect of reducing agent on catalytic hydrodechlorination of aqueous-phase OCDD/F. Chemosphere, 2018. 202: p. 322-329.
74. Lomnicki, S. and Dellinger, B., Formation of PCDD/F from the pyrolysis of 2-chlorophenol on the surface of dispersed copper oxide particles. Proc. Combust. Inst., 2002. 29(2): p. 2463-2468.
75. Hung, P.C., Chang, S.H., and Chang, M.B., Removal of chlorinated aromatic organic compounds from MWI with catalytic filtration. Aerosol Air Qual. Res., 2014. 14(4): p. 1215-1222.
76. Ukisu, Y. and Miyadera, T., Hydrogen-transfer hydrodechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans catalyzed by supported palladium catalysts. Appl. Catal., B, 2003. 40(2): p. 141-149.
77. Martin-Martinez, M., Gómez-Sainero, L.M., Bedia, J., Arevalo-Bastante, A., and Rodriguez, J.J., Enhanced activity of carbon-supported Pd–Pt catalysts in the hydrodechlorination of dichloromethane. Appl. Catal., B, 2016. 184: p. 55-63.
78. Ordóñez, S., Díaz, E., Bueres, R.F., Asedegbega-Nieto, E., and Sastre, H., Carbon nanofibre-supported palladium catalysts as model hydrodechlorination catalysts. J. Catal., 2010. 272(1): p. 158-168.
85
79. Zhao, Z., Fang, Y.L., Alvarez, P.J.J., and Wong, M.S., Degrading perchloroethene at ambient conditions using Pd and Pd-on-Au reduction catalysts. Appl. Catal., B, 2013. 140: p. 468-477.
80. Zhou, H., Meng, A., Long, Y., Li, Q., and Zhang, Y., A review of dioxin-related substances during municipal solid waste incineration. Waste Manage., 2015. 36: p. 106-118.
81. Peng, Y.Q., Chen, J.H., Lu, S.Y., Huang, J.X., Zhang, M.M., Buekens, A., Li, X.D., and Yan, J.H., Chlorophenols in municipal solid waste incineration: A review. Chem. Eng. J., 2016. 292: p. 398-414.
82. Thuan, N.T., Dien, N.T., and Chang, M.B., PCDD/PCDF behavior in low-temperature pyrolysis of PCP-contaminated sandy soil. Sci. Total Environ., 2013. 443: p. 590-596.
指導教授 張木彬(Moo Been Chang) 審核日期 2021-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明