博碩士論文 108323067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:114 、訪客IP:3.21.100.117
姓名 呂祐丞(You-Cheng Lu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 低耗能智慧建築熱流場與能耗模擬分析
(Thermal Flow Field and Energy Consumption Simulation Analysis for Low-Energy Smart Building)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-1以後開放)
摘要(中) 建築相關產業使用消耗全球40%的能源,並且普遍大眾對於建築物的要求變得嚴謹,在熱舒適性、視覺舒適性和室內空氣品質等的要求日漸提高,導致能源消耗的增加,故勢必針對建築舒適性與節能進行深入探討。而本研究與科技部進行計畫合作,於中央大學內建置了低耗能智慧建築,本論文亦將針對此建築實施探討空間舒適性與能源消耗分析。首先藉由當地氣候條件之資料,配合使用ANSYS Fluent流場模擬分析,將流場空間分割成室外與室內空間,並了解不同季節之室外流場之常態分布,最後發現該目標建築物周圍於一年四季之常態風向皆為北風,並依此作為室內自然通風邊界設定之參考,在經由驗證室內流場模型後,發現其相對誤差小於3%,表示研究結果成功將室內外流場之關係連結在一起。接著在室內流場模擬分析後,發現其於春、秋以及冬天時,大部分可依靠開窗的策略使室內保持常態的舒適感受,並且兼顧空氣品質之標準。而在空調模式分析裡,模擬結果顯示,於不同建築物中,其能夠根據空間形狀以及氣流出口位置進行空調位置設計,以使整體空間更加舒適。最後於能耗模擬中發現照明技術的開發可節省大量能源,並且整體建築能耗比能源局公告之用電參考指標低了約17.2%。
摘要(英) The increase in demand for energy has given huge importance to energy saving and utilization worldwide. Construction-related industries consume 40% of the world′s energy, and the general public is more concerned about comfortable living such as thermal comfort, visual comfort and indoor quality, which leads to the increase in energy consumption. Therefore, an in-depth research on building comfort and energy saving is vital. This research aims to design a low energy building with thermal comfort and indoor air quality at National Central University. Also, the space comfort and energy consumption analysis of this building will be investigated. First, the local climatic conditions in the locality of the building in various seasons is collected and then the ANSYS Fluent flow field simulation analysis is performed for the indoor and outdoor flow field spaces to understand the normal distribution of outdoor flow fields in different seasons. The outdoor flow field simulation results show that the normal wind direction around the target building is northerly in all seasons, and this is used as a reference for the indoor natural ventilation boundary setting. After verifying the indoor flow field model, it was found that the relative error was less than 3%, indicating that the flow field simulations results are accurate and a relationship between the indoor and outdoor flow fields is explored. Further, the simulation and analysis of the indoor flow field in spring, fall and winter seasons shows that the normal indoor thermal comfort and air quality standards in the building can be maintained by opening the windows of the building. But have to rely on air conditioners in the summer for indoor thermal comfort. So for the indoor comfort analysis in the air conditioning mode, the flow field simulation results show that the position of air conditioning has to be decided according to the indoor space, shape and the air outlet of the building to make the overall space more comfortable. Finally, it is found in the energy consumption simulation that the development of energy efficient lighting technology can save a lot of energy, and the energy consumption of the target building is about 17.2% lower than the electricity reference index announced by the Energy Bureau. This strategical approach followed in this research concludes that natural ventilation can be used for indoor comforts in different seasons depending upon the local climatic conditions. This research could be a reference for construction industry that position of indoor thermal comfort equipment plays a key role for efficient maintenance of thermal comfort inside building. This research is helpful in designing an energy efficient and low energy building.
關鍵字(中) ★ 計算流體力學
★ 熱舒適性
★ 建築能耗
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xiv
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 5
1.3 研究方法 6
1.3.1 研究對象 7
1.3.2 研究範圍 7
1.3.3 研究架構 8
第二章 文獻回顧 10
2.1 CFD模擬分析 11
2.2 紊流模型 14
2.3 熱舒適性 18
2.4 建築能耗模擬 26
第三章 理論與計算模式 29
3.1 CFD模擬分析 29
3.1.1 基本假設 29
3.1.2 統御方程式 30
3.1.3 大氣邊界層方程式 32
3.1.4 輻射模型 38
3.1.5 數值演算法 42
3.2 建築能耗模擬 48
3.2.1 外部負荷 51
3.2.2 內部負荷 53
3.2.3 外氣負荷 55
第四章 模型建立與條件設定 57
4.1 CFD模擬分析 57
4.1.1 模擬環境介紹 57
4.1.2 幾何模型 63
4.1.3 邊界條件 68
4.1.4 網格收斂性分析 73
4.2 建築能耗模擬 78
4.2.1 建築外殼 80
4.2.2 照明系統 83
4.2.3 室內設備 85
4.2.4 人員活動之排程 86
第五章 結果與討論 95
5.1 CFD模擬分析 95
5.1.1 模型驗證 95
5.1.2 室外流場模擬分析 99
5.1.3 室內流場模擬分析 107
5.2 建築能耗模擬 144
第六章 結論與未來建議 151
6.1 結論 151
6.2 未來建議 153
參考文獻 154
參考文獻 [1] UNEP, Buildings and Climate Change, Summary for Decision-Makers, UNEP, 2009.
[2] Z. J. Zhai and J. M. Helman, “Implications of climate changes to building energy and design”, Sustain Cities Soc, vol. 44, pp. 511-519, Jan 2019.
[3] Y. Zhang, C. Q. He, B. J. Tang, and Y. M. Wei, “China′s energy consumption in the building sector: A life cycle approach”, Energ Buildings, vol. 94, pp. 240-251, May 1 2015.
[4] H. Doukas, C. Nychtis, and J. Psarras, “Assessing energy-saving measures in buildings through an intelligent decision support model”, Build Environ, vol. 44, no. 2, pp. 290-298, Feb 2009.
[5] Laudon K, Laudon J, “Management information system”, Organization and technology in the networked enterprise. 6th Ed. Prentice-Hall, 2000.
[6] 陳家榮、曾宣婷,「節能績效指標之研究-以成功大學為例」,中華民國能源經濟學會,2010。
[7] 台灣綠色生產力基金會,2020非生產性質行業能源查核年報,經濟部能源局,台北,2020。
[8] Z. M. Tong, Y. J. Chen, A. Malkawi, Z. Liu, and R. B. Freeman, “Energy saving potential of natural ventilation in China: The impact of ambient air pollution.”, Appl Energ, vol. 179, pp. 660-668, Oct 1 2016.
[9] P. Blondeau, M. Sperandio, and F. Allard, “Night ventilation for building cooling in summer”, Sol Energy, vol. 61, no. 5, pp. 327-335, Nov 1997.
[10] J. L. Zhou, G. Q. Zhang, Y. L. Lin, and Y. G. Li, “Coupling of thermal mass and natural ventilation in buildings”, Energ Buildings, vol. 40, no. 6, pp. 979-986, 2008.
[11] T. Ayata, E. Cam, and O. Yildiz, “Adaptive neuro-fuzzy inference systems (ANFIS) application to investigate potential use of natural ventilation in new building designs in Turkey”, Energ Convers Manage, vol. 48, no. 5, pp. 1472-1479, May 2007.
[12] M. Kolokotroni, M. D. A. E. S. Perera, D. Azzi, and G. S. Virk, “An investigation of passive ventilation cooling and control strategies for an educational building”, Appl Therm Eng, vol. 21, no. 2, pp. 183-199, Feb 2001.
[13] M. Haase and A. Amato, “An investigation of the potential for natural ventilation and building orientation to achieve thermal comfort in warm and humid climates”, Sol Energy, vol. 83, no. 3, pp. 389-399, Mar 2009.
[14] F. W. H. Yik and Y. F. Lun, “Energy Saving by Utilizing Natural Ventilation in Public Housing in Hong Kong”, Indoor Built Environ, vol. 19, no. 1, pp. 73-87, Feb 2010.
[15] N. Cardinale, M. Micucci, and F. Ruggiero, “Analysis of energy saving using natural ventilation in a traditional Italian building”, Energ Buildings, vol. 35, no. 2, pp. 153-159, Feb 2003.
[16] J. Laverge, N. Van den Bossche, N. Heijmans, and A. Janssens, “Energy saving potential and repercussions on indoor air quality of demand controlled residential ventilation strategies”, Build Environ, vol. 46, no. 7, pp. 1497-1503, Jul 2011.
[17] 黎益肇,「大型建築物自然通風之分析研究」,內政部建築研究所,台北,2014。
[18] 張尉瑩、洪秋琪、周伯丞、劉國滄,「不同開窗位置對於臥室流場結構影響之模擬比較-以室內床鋪面對門之臥室為例」,樹德科技大學,2006。
[19] 龔鉉傑,「低碳排智慧建築熱流場模擬分析與能源使用決策評估」,國立中央大學,碩士論文,2019。
[20] 吳健賓,「丁壩區之三維流場研究」,國立交通大學,碩士論文,2013。
[21] W. Guo, X. Liu and X. Yuan, “Study on natural ventilation design optimization based on CFD simulation for green buildings”, Procedia Eng, vol. 121, pp. 573-581, 2015.
[22] X. H. Fu and M. Z. Han, “Analysis of natural ventilation performance gap between design stage and actual operation of office buildings”, Web of Conference, vol. 172, 2020.
[23] B. Blocken, W. D. Janssen, and T. van Hooff, “CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus”, Environ Modell Softw, vol. 30, pp. 15-34, Apr 2012.
[24] C. G. Popovici, “Numerical simulation of HVAC system functionality in a sociocultural building”, Proc. Technol, vol. 22, pp. 535-542, 2016.
[25] C. G. Popovici, “HVAC system functionality simulation using ANSYS-Fluent”, Energy Procedia, vol. 112, pp. 360-365, 2017.
[26] C. Buratti, D. Palladino and E. Moretti, “Prediction of indoor conditions and thermal comfort using CFD simulations: a case study based on experimental data”, Energy Procedia, vol. 126, pp. 115-122, Sep 2017.
[27] FLUENT 6.3 User’s Guide, Fluent Inc., 2006.
[28] D. S-K. Ting, Basics of engineering turbulence, Academic Press, New York, 2016.
[29] Y. A. Cengel and J. M. Cimbala, Fluid mechanics-fundamentals and applications, McGraw Hill, 2013.
[30] C. Pfeiler and H. Raupenstrauch, “Application of different turbulence models to study the effect of local anisotropy for a non-premixed piloted methane flame”, European Symposium on Computer Aided Process Engineering, 2010.
[31] ASHRAE, ANSI/ASHRAE Standard 55-2004, “Thermal environmental conditions for human occupancy”, Atlanta, American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2004.
[32] W. Li, J. L. Zhang, T. Y. Zhao, and R. B. Liang, “Experimental research of online monitoring and evaluation method of human thermal sensation in different active states based on wristband device”, Energ Buildings, vol. 173, pp. 613-622, Aug 15 2018.
[33] Y. Qi et al., “Large-scale and long-term monitoring of the thermal environments and adaptive behaviors in Chinese urban residential buildings”, Build Environ, vol. 168, Feb 2020.
[34] D. Li, C. C. Menassa, and V. R. Kamat, “Personalized human comfort in indoor building environments under diverse conditioning modes”, Build Environ, vol. 126, pp. 304-317, Dec 2017.
[35] W. Jung and F. Jazizadeh, “Comparative assessment of HVAC control strategies using personal thermal comfort and sensitivity models”, Build Environ, vol. 158, pp. 104-119, Jul 2019.
[36] D. Bienvenido-Huertas, D. Sanchez-Garcia, A. Perez-Fargallo, and C. Rubio-Bellido, “Optimization of energy saving with adaptive setpoint temperatures by calculating the prevailing mean outdoor air temperature”, Build Environ, vol. 170, Mar 2020.
[37] B. Tejedor, M. Casals, M. Gangolells, M. Macarulla, and N. Forcada, “Human comfort modelling for elderly people by infrared thermography: Evaluating the thermoregulation system responses in an indoor environment during winter”, Build Environ, vol. 186, Dec 2020.
[38] ASHRAE, ANSI/ASHRAE Standard 55-2004, “Thermal environmental conditions for human occupancy”, Atlanta, American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2004.
[39] M. Bayoumi, “Energy saving method for improving thermal comfort and air quality in warm humid climates using isothermal high velocity ventilation”, Renew Energ, vol. 114, pp. 502-512, Dec 2017.
[40] B. W. Olesen, “Thermal comfort”, Bruel and Kjaer Technical Review, 1982.
[41] M. E. Fountain and E. A. Arens, “Air Movement and Thermal Comfort”, Ashrae J, vol. 35, no. 8, pp. 26-30, Aug 1993.
[42] J. Khedari, N. Yamtraipat, N. Pratintong, and J. Hirunlabh, “Thailand ventilation comfort chart”, Energ Buildings, vol. 32, no. 3, pp. 245-249, Sep 2000.
[43] E. Arens, S. Turner, H. Zhang, and G. Paliaga, “Moving Air For Comfort”, Ashrae Journal, vol. 51, no. 5, pp. 18-+, May 2009.
[44] S. H. Ho, L. Rosario, and M. M. Rahman, “Thermal comfort enhancement by using a ceiling fan”, Appl Therm Eng, vol. 29, no. 8-9, pp. 1648-1656, Jun 2009.
[45] P. O. Fanger, “Thermal comfort: analysis and applications in environmental engineering”, McGraw-Hill, New York, 1970.
[46] T. Cheung, S. Schiavon, T. Parkinson, P. X. Li, and G. Brager, “Analysis of the accuracy on PMV - PPD model using the ASHRAE Global Thermal Comfort Database II”, Build Environ, vol. 153, pp. 205-217, Apr 15 2019.
[47] ISO, ISO standard 7730, “Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria”, International Standards Organization”, 2005.
[48] M. H. Hasan, F. Alsaleem, and M. Rafaie, “Sensitivity study for the PMV thermal comfort model and the use of wearable devices biometric data for metabolic rate estimation”, Build Environ, vol. 110, pp. 173-183, Dec 2016.
[49] Simulation Research Group, Lawrence Berkley National Lab, Overview of DOE 2.2, http://ww.doe2.com/
[50] James J. Hirsch & Associates, Introductory Tutorial of eQUEST, version 3.64, 2010.
[51] Y. C. Wang and H. T. Lin, “Energy-saving techniques of full-scale green building analysis research ----- Taiwan’s first zero-carbon green building”, vol. 121-126, pp. 3058-3066, 2012.
[52] J. S. Tang and L. J. Leu, “A study of coupled building energy and CFD simulations”, Proceedings of the 22nd KKCNN Symposium on Civil Engineering, Chiang Mai, Thailand, 2009.
[53] Y. M. Zhu, “Applying computer-based simulation to energy auditing: A case study”, Energ Buildings, vol. 38, no. 5, pp. 421-428, May 2006.
[54] Y. Pan, Z. Huang, G. Wu and C. Chen, “The application of building energy simulation and calibration in two high-rise commercial buildings in Shanghai”, Second National IBPSA-USA Conference, Cambridge, MA, pp. 252-261, Aug 2006.
[55] M. Bojic and F. Yik, “Cooling energy evaluation for high-rise residential buildings in Hong Kong”, Energ Buildings, vol. 37, no. 4, pp. 345-351, Apr 2005.
[56] S. A. Orszag, V. Yakhot, W. S. Flannery, F. Boysan, D. Choudhury, J. Maruzewski, and B. Patel, “Renormalization Group Modeling and Turbulence Simulations”, In International Conference on Near-Wall Turbulent Flows, Tempe, Arizona. 1993.
[57] R. Buccolieri, J. L. Santiago, E. Rivas, and B. Saanchez, “Reprint of: Review on urban tree modelling in CFD simulations: Aerodynamic, deposition and thermal effects”, Urban for Urban Gree, vol. 37, pp. 56-64, Jan 2019.
[58] M. Robitu, M. Musy, C. Inard, and D. Groleau, “Modeling the influence of vegetation and water pond on urban microclimate”, Sol Energy, vol. 80, no. 4, pp. 435-447, 2006.
[59] J. Liu, J. M. Chen, T. A. Black, and M. D. Novak, “E-epsilon modelling of turbulent air flow downwind of a model forest edge”, Bound-Lay Meteorol, vol. 77, no. 1, pp. 21-44, Jan 1996.
[60] S. Coccolo, D. Pearlmutter, J. Kaempf, and J. L. Scartezzini, “Thermal Comfort Maps to estimate the impact of urban greening on the outdoor human comfort”, Urban for Urban Gree, vol. 35, pp. 91-105, Oct 2018.
[61] M. Bruse and H. Fleer, “Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model”, Environ Modell Softw, vol. 13, no. 3-4, pp. 373-384, 1998.
[62] M. H. Kobayashi, J. C. F. Pereira, and M. B. B. Siqueira, “Numerical Study of the Turbulent-Flow over and in a Model Forest on a 2d Hill”, J Wind Eng Ind Aerod, vol. 53, no. 3, pp. 357-374, Dec 1994.
[63] G. S. Campbell, “An Introduction to environmental biophysics”, Springer, New York, CFD2000 manual, Computational fluid dynamics systems, Pacific Sierra Research Corporation, pp. 159, 1977.
[64] T. R. Oke, “Boundary layer climates”, New York: Methuen, 1987.
[65] B. Blocken, T. Stathopoulos, and J. Carmeliet, “CFD simulation of the atmospheric boundary layer: wall function problems”, Atmos Environ, vol. 41, no. 2, pp. 238-252, Jan 2007.
[66] B. Sidawi and N. Hamza, “CFD modeling as a tool for assessing outdoor thermal comfort conditions in urban settings in hot arid climates”, ITcon, vol. 19, pp. 248-269, 2014.
[67] J. Bouyer, C. Inard, and M. Musy, “Microclimatic coupling as a solution to improve building energy simulation in an urban context”, Energ Buildings, vol. 43, no. 7, pp. 1549-1559, Jul 2011.
[68] 蔣昀祐,「小型低速風洞模擬大氣邊界層形成之研究-以朝陽科技大學風洞為例」,朝陽科技大學,碩士論文,2011。
[69] 周郁汶,「建築物與地形在大氣邊界層中的流場模擬」,國立中央大學,碩士論文,2013。
[70] P. J. Richards, “Computational modelling of wind flows around low rise buildings using PHOENIX”, Report for the ARFC Institute of Engineering Research Wrest Park, Silsoe Research Institute, UK: Bedfordshire, 1989.
[71] R. I. Harris and D. M. Deaves, “The structure of strong winds”, CIRA Conference on Wind Engineering in the Eighties, London, Construction Industry Research and Information Association, pp. 4, 1981.
[72] J. Wieringa, “Updating the davenport roughness classification”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 41-44, pp. 357-68, 1992.
[73] 涂材宏,「使用壓縮空氣噴流分離矽晶片研究」,國立交通大學,碩士論文,2012。
[74] J. P. Vandoormaal and G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows” Numerical Heat Transfer, vol. 7, pp. 147-163, 1984.
[75] 廖慧燕、呂良正,「建築物耗能評估軟體驗證之研究–既有建築節能改善之效益評估」,內政部建築研究所協同研究報告,2012。
[76] 2009 ASHRAE Handbook: Fundamentals-IP Edition. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2009.
[77] A. K. Betts and J. H. Ball, “Albedo over the boreal forest”, Journal of Geophysical Research, vol. 102, pp. 28-909, 1997.
[78] W. G. Rees, “Physical principles of remote sensing”, Cambridge, England: Cambridge University Press, pp. 46, 1990.
[79] R. C. Weast, (Ed.). Handbook of Chemistry and Physics, 61st ed. Boca Raton, FL: CRC Press, pp. 398, 1981.
[80] B. Blocken, “Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations”, Build Environ, vol. 91, pp. 219-245, Sep 2015.
[81] 范家魁,「擁擠空間之空氣品質計算」,國立交通大學,碩士論文,2013。
[82] K. M. Almohammadi, D. B. Ingham, L. Ma, and M. Pourkashan, “Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine”, Energy, vol. 58, pp. 483-493, Sep 1 2013.
[83] 劉家安,「國產三軸立式加工中心機主軸頭暫態熱流固耦合分析優化與實機驗證」,國立中興大學,碩士論文,2016。
[84] 姚志廷,「隔熱建材節能效益及綠建材基準研擬之研究」,內政部建築研究所自行研究報告,2015。
[85] W. Feng, L Zou, G. Gao, G. Wu, J. Shen, and W. Li, “Gasochromic smart window: optical and thermal properties, energy simulation and feasibility analysis”, Solar Energy Materials and Solar Cells, vol. 144, pp. 316-323, 2016.
[86] M. T. Ke, C. H. Yeh, and J. T. Jian, “Analysis of building energy consumption parameters and energy savings measurement and verification by applying eQUEST software”, Energ Buildings, vol. 61, pp. 100-107, Jun 2013.
[87] 中華民國衛生福利部統計處,老人狀況調查報告,2005。
[88] Y. Wang, H. Lina, W. Wang, Y. Liu, R. Wennersten, and Q. Sun, “Impacts of climate change on the cooling loads of residential buildings differences between occupants with different age”, 9th International Conference on Applied Energy, Aug 2017.
[89] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei and T. Weng, “Occupancy-driven energy management for smart building automation”, In Proc. of ACM BuildSys, pp. 1-6, 2010.
[90] 陳品纓,「建築物配置對風場影響之研究-以社子島為例」,中國科技大學,碩士論文,2019。
[91] 林憲德,綠色建築,詹氏書局,台北,2006。
指導教授 曾重仁 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明