博碩士論文 108323062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:18.190.176.131
姓名 林家銘(Chia-Ming Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 使用Ni1-xCox-BCZY陽極提升以甲烷為燃料之質子傳導型固態氧化物燃料電池耐碳性
(Carbon tolerant Ni1-xCox-BCZY anode for methane-fed proton conducting solid oxide fuel cell)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-1以後開放)
摘要(中) 本研究使用合金觸媒Ni1-xCox (x = 0.1, 0.2, 0.3)取代傳統鎳金屬觸媒作為固態氧化物燃料電池陽極之觸媒材料,達到改善陽極材料在長時間操作時,因使用碳氫燃料所造成陽極之積碳問題。透過固態反應法(Solid State Reaction, SSR)製備Ni1-xCox-BCZY作為質子傳導型固態氧化物燃料電池(P-SOFC)之合金陽極,並使用刮刀法及旋塗法製作陽極支撐型電池,並分別通以氫氣和甲烷進行電池性能及穩定性測試。目標以少許鈷元素(Cobalt, Co)與鎳元素(Nickel, Ni)進行置換,使Ni1-xCox電池達到比傳統以Ni金屬為主之電池更加優異的穩定性。
實驗結果顯示,四種參雜比例中,Ni0.9Co0.1電池具有較佳之電池性能,在800 ºC下以氫氣為燃料時,最大功率密度質為390 mW/cm2,其歐姆阻抗與極化阻抗為1.714 Ω·cm2及0.017Ω·cm2,而以傳統鎳金屬為觸媒之電池性能為361 mW/cm2,其歐姆阻抗與極化阻抗為1.734Ω·cm2及0.021Ω·cm2;以甲烷為燃料時,Ni0.9Co0.1電池之最大功率密度質為169.1 mW/cm2,其歐姆阻抗與極化阻抗為1.932 Ω·cm2及0.417 Ω·cm2,而Ni電池之性能為162.2 mW/cm2,其歐姆阻抗與極化阻抗為1.954 Ω·cm2及0.431Ω·cm2,而在甲烷下之穩定性測試中Ni0.9Co0.1電池之壽命為19.5小時,比Ni電池5.5小時之電池壽命多3倍以上。
摘要(英) The rise in global warming and the Paris agreement on the control of temperature rise has increased the significance of green and carbon-neutral research for energy generation. Proton conducting solid oxide fuel cells (P-SOFC) are used for the conversion of hydrocarbon into electrical energy with carbon capture. Carbon form hydrocarbon fuels partially deposit on the Ni-BCZY anode of P-SOFC and further degrades the functioning of P-SOFC. In this thesis, Ni-BCZY anode is doped with Co for carbon deposition resistance and similar cell performance in P-SOFC operation. Ni1-xCox-BCZY (x = 0.1, 0.2, 0.3) anode material is prepared by easily scalable solid-state reaction process. The tape-casting process is used for developing an anode layer in P-SOFC cell integration. Further, electrochemical experiments were performed with CH4 as fuel for integrated P-SOFC to analyze the carbon resistance property of Ni1-xCox-BCZY anode. Also, the performance of integrated P-SOFC with H2 as fuel is also analyzed.
The experimental results show that P-SOFC with Ni0.9Co0.1-BCZY anode exhibits a maximum power density of 390 mW/cm2 with pure H2 at 800 ᵒC, ohmic and polarization resistance is 1.714 Ω·cm2 and 0.017 Ω·cm2. Higher performance of 29 mW/cm2 compared to traditional Ni-BCZY anode P-SOFC is observed for Ni0.9Co0.1-BCZY anode. Ohmic and polarization resistance of Ni-BCZY anode is 1.734 Ω·cm2 and 0.021 Ω·cm2. The lower ohmic and polarization resistance of Ni0.9Co0.1-BCZY anode compared to traditional Ni anode indicate that the catalytic activity of Ni anode can be improved with cobalt doping. The higher performance of Ni0.9Co0.1-BCZY anode could be due to efficient conversion of gas to power and easy electron transfer.
The Ni0.9Co0.1-BCZY anode P-SOFC with CH4 fuel exhibits a maximum power density of 169.1 mW/cm2 at 800 ᵒC. P-SOFC with Ni-BCZY anode generates a maximum power density of 162.2 mW/cm2 at 800 ᵒC. The ohmic and polarization resistance of Ni0.9Co0.1-BCZY anode P-SOFC is 1.932 Ω·cm2 and 0.417 Ω·cm2. Whereas for Ni-BCZY anode P-SOFC, ohmic and polarization resistance is 1.954 Ω·cm2 and 0.431 Ω·cm2. The lower resistance and higher performance of Ni0.9Co0.1-BCZY anode compared to Ni-BCZY attributes to the low carbon deposition and immediate conversion of CH4 to power. P-SOFC with Ni0.9Co0.1-BCZY anode exhibits nearly 3.5 times longer life time compared to Ni-BCZY anode with CH4 as fuel.
A NiCo-BCZY anode for lower carbon deposition and higher performance of P-SOFC with pure H2 and CH4 is developed in this work. This work helps for generating both clean and carbon capture energy generation.
關鍵字(中) ★ 質子傳導固態氧化物燃料電池
★ 甲烷
★ 穩定性
★ 鎳鈷合金陽極
關鍵字(英) ★ proton conducting solid oxide fuel cell
★ methane
★ stability
★ nickel cobalt anode
論文目次 中文摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 IX
一、緒論 1
1-1 前言 1
1-2 燃料電池(Fuel cell, FC) 2
1-3 固態氧化物燃料電池(SOFC) 3
1-2-1 P-SOFC及O-SOFC 4
1-2-1 P-SOFC原理 5
1-3 P-SOFC材料之特性 6
1-3-1 P-SOFC電解質 7
1-3-2 P-SOFC陽極材料 11
1-3-3 P-SOFC陰極材料 14
1-4 研究目的 15
二、文獻回顧 16
2-1 碳沉積對SOFC之影響 16
2-2 改變合金比例對於陽極材料性質的影響 19
三、實驗方法 22
3-1 實驗製程設備 22
3-1-1 實驗藥品 22
3-1-2 製程設備 23
3-2 實驗流程 24
3-2-1 陽極與電解質粉末製備流程 24
3-2-2 陽極基板製備流程 25
3-2-3 單電池製備流程 25
3-3 材料分析儀器 26
3-3-1 X光繞射儀(X-Ray Diffraction, XRD) 26
3-3-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 27
3-3-3 燃料電池測試系統 28
3-3-4 恆電位儀 30
四、結果與討論 32
4-1 鎳鈷合金陽極材料分析 32
4-2 鎳鈷電池性能分析 37
4-2-1 氫氣下之鎳鈷電池性能分析 37
4-2-2 甲烷下之鎳鈷電池性能分析 49
4-3 鎳鈷電池穩定性 63
五、結論 68
參考文獻 69
參考文獻 [1] J. Larminie and A. Dicks, Fuel cell systems explained: Second edition. 2013.
[2] L. Carrette, K. A. Friedrich, and U. Stimming, “Fuel Cells - Fundamentals and Applications” Fuel Cells, vol. 1, no. 1, pp. 5–39, 2001.
[3] https://www.materialsnet.com.tw/industry/NewProductView.aspx?pid=1164
[4] http://www.taitung.gov.tw/News_Content.aspx?n=E4FA0485B2A5071E&s=0E1D042043578E1D
[5] file:///C:/Users/User/Downloads/201798152754%20.pdf
[6] http://www.secutech.com/15/download/Energy-saving_handbook.pdf
[7] https://toplus-e.com.tw/blog/19/81
[8] https://www.chinatimes.com/newspapers/20171027000388-260208?chdtv
[9] X. F. Ren, Q. Y. Lv, L. F. Liu, B. H. Liu, Y. R. Wang, A. Liu and G. Wu, “Current progress of Pt and Pt-based electrocatalysts used for fuel cells”, Sustainable Energy Fuels, vol. 4, pp. 15–30, 2020.
[10] S. Mclntosh, R. J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chem. Rev., Vol. 104, pp. 4845-4866, 2004.
[11] C. Xia, M. Liu, “Novel cathodes for low‐temperature solid oxide fuel cells”, Adv. Mat., Vol. 14, pp. 521-523, 2002.
[12] S. Primdahl, “Nickel/yttria-stabilised zirconia cermet anodes for solid oxide fuel cells”, Netherlands: University of Twente, The Netherlands, 1999.
[13] J. Larminie, A. Dicks, “Fuel cell systems explained”, Second Edition ed: John Wiley & Sons, Ltd; 2003.
[14] L. Bi, E. H. Da’as, S. P. Shafi, “Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte”, Electrochem. Commun., Vol. 80, pp. 20-23, 2017.
[15] L. Malavasi, C. J. Fisher, M. S. Islam, “Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features”, Chem. Soc. Rev., Vol. 39, pp. 4370-4387, 2010.
[16] E. Fabbri, D. Pergolesi, E. Traversa, “Materials challenges toward proton-conducting oxide fuel cells: a critical review”, Chem. Soc. Rev., Vol. 39, pp. 4355-4369, 2010.
[17] H. Iwahara, “Oxide-ionic and protonic conductors based on perovskite-type oxides and their possible applications”, Solid State Ionics, Vol. 52, pp. 99-104, 1992.
[18] H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, “Prospect of hydrogen technology using proton-conducting ceramics”, Solid State Ionics, Vol. 168, pp. 299-310, 2004.
[19] H. Iwahara, H. Uchida, K. Ono, K. Ogaki, “Proton conduction in sintered oxides based on BaCeO3”, J. Electrochem. Soc., Vol. 135, pp. 529-533, 1988.
[20] K. D. Kreuer, “Proton-conducting oxide”, Annu. Rev. Mater. Res., Vol. 33, pp. 333-359, 2003.
[21] Y. M. Guo, Y. Lin, H. A. Shi, R. Ran, Z. P. Shao, “A high electrochemical performance proton conductor electrolyte with CO2 tolerance”, Chinese J. Catal., Vol. 30, pp. 479-481, 2009.
[22] Y. Okuyama, N. Ebihara, K. Okuyama, Y. Mizutani, “Improvement of protonic ceramic fuel cells with thin film BCZY electrolyte”, ECS Trans., Vol. 68, pp. 2545-2553, 2015.
[23] G. S. Reddy, R. Bauri, “Y and In-doped BaCeO3-BaZrO3 solid solutions: chemically stable and easily sinterable proton conducting oxides”, J. Alloys Compd., Vol. 688, pp. 1039-1046, 2016.
[24] S. Gopalan, A. V. Virkar, “Thermodynamic stabilities of SrCeO3 and BaCeO3 using a molten salt method and galvanic cells”, J. Electrochem. Soc., Vol. 140, pp. 1060-1065, 1993.
[25] F. L. Chen, O. T. Sørensen, G. Y. Meng, D. K. Peng, “Chemical stability study of BaCe0.9Nd0.1O3-δ high-temperature proton-conducting ceramic”, J. Mater. Chem., Vol. 7, pp. 481-485, 1997.
[26] Y. M. Guo, Y. Lin, R. Ran, Z. P. Shao, “Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications”, J. Power Sources, Vol. 193, pp. 400-407, 2009.
[27] A. Afif, N. Radenahmad, C. M. Lim, M. I. Petra, M. Aminullslam, S. M. H. Rahman, S. Eriksson, A. K. Azad, “Structural study and proton conductivity in BaCe0.7Zr0.25−xYxZn0.05O3 (x=0.05, 0.1, 0.15, 0.2 & 0.25)”, Int. J. Hydrogen Energy, Vol. 41, pp. 11823-11831, 2015.
[28] H. S. Spacil. “Electrical device including nickel-containing stabilized zirconia electrode”, US patent 3, 503, 8091970.
[29] C. W. Tanner, K. Z. Fung, A. V. Virkar, “The effect of porous composite electrode structure on solid oxide fuel cell performance: I. theoretical analysis”, J. Electrochem. Soc., Vol. 144, pp. 21-30, 1997.
[30] R. J. Gorte, J. M. Vohs, “Nanostructured anodes for solid oxide fuel cells”, Curr. Opin. Colloid Interface Sci., Vol. 14, pp. 236-244, 2009.
[31] E. Fabbri, D. Pergolesi, E. Traversa, “Electrode materials: A challenge for the exploitation of protonic solid oxide fuel cells”, Sci. Technol. Adv. Mater., Vol. 11, pp. 044301, 2010.
[32] T. Matsui, R. Kishida, H. Muroyama, K. Eguchi, “Comparative study on performance stability of Ni-oxide cermet anodes under humidified atmospheres in solid oxide fuel cells”, J. Electrochem. Soc., Vol. 159, pp. F456-F460, 2012.
[33] S. M. Fang, K. Brinkman, F. L. Chen, “Unprecedented CO2 promoted hydrogen permeation in Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3−δ membrane”, Appl. Mater. Interfaces, Vol. 6, pp. 725-730, 2014.
[34] G. C. Mather, F. M. Figueiredo, J. R. Jurado, J. R. Frade, “Synthesis and characterization of cermet anodes for SOFCs with a proton-conducting ceramic phase”, Solid State Ionics, Vol. 162, pp. 115-120, 2003.
[35] W. G. Coors, A. Manerbino, “Characterization of composite cermet with 68 wt% NiO and BaCe0.2Zr0.6Y0.2O3−δ”, J. Membr. Sci., Vol. 376, pp. 50-55, 2011.
[36] L. Bi, E. Fabbri, Z. Sun, E. Traversa, “BaZr0.8Y0.2O3−δ-NiO composite anodic powders for proton-conducting SOFCs prepared by a combustion method”, J Electrochem. Soc., Vol. 158, pp. B797-B803, 2011.
[37] N. Narendar, G. C. Mather, P. A. N. Dias, D. P. Fagg, “The importance of phase purity in Ni-BaZr0.85Y0.15O3−δ cermet anodes–novel nitrate-free combustion route and electrochemical study”, RSC Adv., Vol. 3, pp. 859-869, 2013.
[38] L. Chevallier, M. Zunic, V. Esposito, E. D. Bartolomeo, E Traversa, “A wet-chemical route for the preparation of Ni-BaCe0.9Y0.1O3−δ cermet anodes for IT-SOFCs”, Solid State Ionics, Vol. 180, pp. 715-720, 2009.
[39] B. H. Rainwater, M. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, Int. J. Hydrogen Energy, Vol. 37, pp. 18342-18348, 2012.
[40] L. Yang, C. Zuo, S. Wang, Z. Cheng, M. Liu. “A novel composite cathode for low-temperature SOFCs based on oxide proton conductors”, Adv. Mater., Vol. 20, pp. 3280-3283, 2008.
[41] H. S. Song, S. Lee, S. H. Hyun, J. Kim, J. Moon, “Compositional influence of LSM-YSZ composite cathodes on improved performance and durability of solid oxide fuel cells”, J. Power Sources, Vol. 187, pp. 25-31, 2009.
[42] R. Peng, T. Wu, W. Liu, X. Liu, G. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, J. Mater. Chem, Vol. 20, pp. 6218-6225, 2010.
[43] J. Dailly, S. Fourcade, A. Largeteau, F. Mauvy, J. C. Grenier, M. Marrony, “Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells”, Electrochim. Acta, Vol. 55, pp. 5847-5853, 2010.
[44] Choi, S.; Kucharczyk, C.J.; Liang, Y.; Zhang, X.; Takeuchi, I.; Ji, H.-I.; Haile, S.M. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy, Vol. 3, pp. 202-210, 2018.
[45] Y . Lin, Z. Zhan, J. L iu, S. A. Barnett, Direct operatio n of solid oxide furl cells with methane fuel, Solid State Ionics , Vol. 176 , pp. 1827-1835, 2005.
[46] Argyle, M. D.; Bartholomew, C. H. Heterogeneous Catalyst Deactivation and Regeneration: A Review Catalysts, Vol. 5 (1), pp. 145-269, 2015.
[47] J. J. Spivey, “Deactivation of Reforming Catalysts”, Fuel Cells: Technologies for Fuel Processing, pp. 285-315, 2011.
[48] H. Kim, C. Lu, W. L. Worrell, J. M. Vohs, R. J. Gorte, “Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells”, J. Electrochem. Soc., Vol. 149, pp. A247-A250, 2002.
[49] M. L. Toebes, J. H. Bitter, A. J. V. Dillen, K. P. D. Jong, “Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers”, Cat. Today, Vol. 76, pp. 33-42, 2002.
[50] K. Wei, X. X. Wang, R. A. Budiman, J. H. Kang, B. Lin, F. B. Zhou, Y. H. Ling, “Progress in Ni-based anode materials for direct hydrocarbon solid oxide fuel cells”, J. Mater. Sci., Vol. 53, pp. 8747-8765, 2018.
[51] A. K. Chatterjee, R. Banerjee, M. Sharon, “Enhancement of hydrogen oxidation activity at a nickel coated carbon beads electrode by cobalt and iron”, J. Power Sources, Vol. 137, pp. 216-221, 2004.
[52] C. K. Cho, B. H. Choi, K. T. Lee, “Effect of Co alloying on the electrochemical performance of Ni-Ce0.8Gd0.2O1.9 anodes for hydrocarbon-fueled solid oxide fuel cells”, J. Alloys Compd., Vol. 541, pp. 433-439, 2012.
[53] J. Ayawanna, D. Wattanasiriwech, Suthee Wattanasiriwech, Kazunori Sato, “Electrochemical performance of Ni1-xCox-GDC cermet anodes for SOFCs”, Energy Procedia, Vol. 34, pp. 439-448, 2013.
[54] R. Nishida, P. Puengjinda, H. Nishino, K. Kakinuma, M. E. Brito, M. Watanabe, H. Uchida, “High-performance electrodes for reversible solid oxide fuel cell/solid oxide electrolysis cell: Ni–Co dispersed ceria hydrogen electrodes”, RSC Adv., Vol. 4, pp. 16260-16266, 2014.
[55] T. Guo, X. L. Dong, M. M. Shirolkar, X. Song, M. Wang, L. Zhang, M. Li, H. Q. Wang, “Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells”, ACS Appl. Mater. Interfaces, Vol. 6, pp. 16131-16139, 2014.
[56] J. C. W. Mah, A. Muchtar, M. R. Somalu, M. J. Ghazali, “Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques”, Int. J. Hydrogen Energy, Vol. 42, pp. 9219-9229, 2017.
[57] W. Nicharee, S. Chaianansutcharit, K. Sato, “Electrochemical performance and stability of Ni1-xCox-based cermet anode for direct methane-fuelled solid oxide fuel cells”, MATEC Web of Conferences, Vol. 130, pp. 3005-3009, 2017.
[58] G. C. Ding, T. Gan, J. Yu, P. Li, X. L. Yao, N. J. Hou, L. J. Fan, Y. C. Zhao, Y. D. Li, “Carbon-resistant Ni1-xCox-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol”, Catal. Today, Vol. 298, pp. 250-257, 2017.
[59] M. S. Fan, A. Z. Abdullah, S. Bhatia, “Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2: preparation, characterization and activity studies”, Appl. Catl. B-Environ., Vol. 100, pp. 365-377, 2010.
[60] J. G. Zhang, H. Wang, A. K. Dalai, “Development of stable bimetallic catalysts for carbon dioxide reforming of methane”, J. Catal., Vol. 249, pp. 300-310, 2007.
[61] W. Tu, M. Ghoussoub, C. V. Singh, Y. H. C. Chin, “Consequences of surface oxophilicity of Ni, Ni-Co, and Co clusters on methane activation”, J. Am. Chem. Soc., Vol. 139, pp. 6928-6945, 2017.
[62] http://www.dengyng.com.tw/htm/dy_p10.htm.
[63] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, Vol. 138, pp. 91-98, 2000.
[64] Z. Wang, J. Qian, J. Cao, S. Wang, T. Wen, “A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs)”, Journal of Alloys and Compounds, Vol. 437 (1-2), pp.264-268, 2007.
[65] J. M. Serra and W. A. Meulenberg, “Thin‐Film Proton BaZr0.85Y0.15O3 Conducting Electrolytes: Toward an Intermediate‐Temperature Solid Oxide Fuel Cell Alternative”, Journal of the American Ceramic Society, Vol. 90, pp. 2082-2089, 2007.
[66] Q.-A.Huang, R. Hui, B. W. Wang, J. J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta, Vol. 52, Issue 28, pp. 8144-8164, 2007.
[67] G. Chiodelli, L. Malavasi, “Electrochemical open circuit voltage (OCV) characterization of SOFC materials”, Ionics, Vol. 19, pp. 1135-1144, 2013.
[68] D. B. Ingram and S. Linicz, “First-Principles Analysis of the Activity of Transition and Noble Metals in the Direct Utilization of Hydrocarbon Fuels at Solid Oxide Fuel Cell Operating Conditions”, Journal of The Electrochemical Society, Vol. 156, pp.B1457-B1465, 2009.
[69] Lu Zhou, Moussab Harb, Mohamed Nejib Hedhili, Noor Al Mana and Jean Marie Basset, “Microemulsion prepared Ni88Pt12 for methane cracking”, RSC Advances, Vol. 7, pp. 4078, 2017.
[70] Tushar V. Choudhary , Erhan Aksoylu & D. Wayne Goodman, “Nonoxidative Activation of Methane”, Catalysis Reviews: Science and Engineering, Vol. 45, pp. 151-203, 2003.
[71] Wesley Blanke Crow, M. E., M. S., “DIFFUSION OF COBALT, NICKEL, AND IRONIN COBALT OXIDE AND NICKEL OXIDE”, The Ohio State University, 1969.
[72] Jason D. Nicholas, Lutgard C. De Jonghe, “Prediction and evaluation of sintering aids for Cerium Gadolinium Oxide”, Solid State Ionics, Vol. 178, pp. 1187-1194, 2007.
[73] Yanhong Wan, Beibei He, Ranran Wang, Yihan Ling, Ling Zhao, “Effect of Co doping on sinterability and protonic conductivity of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ for protonic ceramic fuel cells”, Journal of Power Sources, Vol. 347, pp. 14-20, 2017.
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明