博碩士論文 108323033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.145.109.144
姓名 劉柏億(Po-Yi Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 脈衝複合偏壓電化學放電加工石英晶圓之研究
(Research on Pulsed compound Bias Voltage Electrochemical Discharge Machining Quartz Wafer)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究★ 超音波輔助電化學留心加工矩槽圓柱構造之研究
★ 超音波輔助連續流式線電化學放電加工及電泳拋光石英晶圓之研究★ 電化學放電複合超音波振動輔助電泳沉積加工石英晶圓微形方孔之研究
★ 電極公轉繞圓電化學放電切割加工石英晶圓之研究★ 快速塑性成型(QPF)製程的精準度探討
★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數★ 超音波輔助微電化學鑽孔鎳基合金加工研究
★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究
★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動★ 超音波輔助電化學加工微孔陣列之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究是採用直徑55 μm之碳化鎢圓柱作為工具電極對石英晶圓材料進行脈衝複合偏壓電化學放電鑽孔之研究,進行一系列加工特性之研究,期望獲得較佳之加工能力與較小擴孔量。本研究採用電化學放電鑽孔時,藉由脈衝複合偏壓之方式進行單因子實驗分析,探討各種加工參數如工作電壓、進給速度、脈衝週期、衝擊係數以及主軸轉速等對於石英晶圓之各種加工特性影響,加工特性包含入、出口孔徑及出口破片情況。
採用脈衝複合偏壓電化學放電鑽孔加工時,脈衝複合偏壓會使得工具電極上的氣泡不會因為脈衝休止時間而完全消散,這是因為在休止時間時,工作電壓還是可以維持在臨界電壓附近,才不會使氣泡完全消散,並在下一次脈衝開啟時能夠快速生成氣膜,以達到精度要求,實驗結果顯示利用脈衝複合偏壓加工,能有效提升加工能力與材料移除率以及改善出口破裂之情況,並能獲得較佳的擴孔量,在工作電壓42 V、進給速度25 µm/min、脈衝週期30 µs、衝擊係數20 %及主軸轉速100 rpm之下,有最佳孔徑,且能將入、出口孔徑控制在80 ± 8µm之精度內。
摘要(英) This study used a 55 μm diameter tungsten carbide cylindrical rod as a tool electrode to perform pulse compound bias voltage electrochemical discharge drilling on quartz wafer materials. A series of research on processing characteristics were conducted, hoping to obtain better processing ability and smaller hole expansion. This study performed a single-factor experimental of electrochemical discharge drilling by using pulse compound bias voltage. The effect of the working voltage, feed speed, pulse period, impact coefficient and spindle speed on the diameters of the hole inlet, the diameters of the hole outlet and hole outlet fragments were discussed in the experiment.
When using pulsed compound bias voltage electrochemical discharge drilling, it will prevent the bubbles on the tool electrode from being completely dissipated during the pulse resting period. The reason is that the working voltage can still be maintained near the critical voltage during the rest time, the bubbles will not completely dissipate, and the gas film can be quickly formed when the next pulse is turned on. The phenomenon achieve the accuracy requirements. The experimental results show that the processing capability, material removal rate, outlet fragment can be effectively improved by using pulsed compound bias voltage. It can also obtain a smaller hole expansion. At working voltage 42 V, feed speed 25 µm/min, pulse period 30 µs, impact coefficient 20 % and spindle speed 100 rpm, the best diameters of the hole can be obtained. Both the diameters of the hole inlet and outlet can be controlled within the accuracy of 80 ± 8 µm.
關鍵字(中) ★ 電化學放電鑽孔
★ 脈衝複合偏壓
★ 石英晶圓
關鍵字(英) ★ Electrochemical discharge drilling
★ Pulse compound bias voltage
★ Quartz wafer
論文目次 摘 要 I
ABSTRACT II
誌 謝 III
目 錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 2
1-3 文獻回顧 4
1-4 論文架構 11
第二章 實驗基礎理論 12
2-1 電化學放電加工的基礎理論 12
2-1-1 電化學放電加工之放電火花產生機制 14
2-1-2 電化學放電加工之材料移除機制 17
2-2 放電加工的基礎理論 20
2-2-1 放電加工之材料移除機制 22
第三章 實驗設備與材料 25
3-1 實驗方法 25
3-2 基礎實驗相關設備 28
3-3 實驗材料 37
3-4 實驗流程與方法 41
第四章 結果與討論 45
4-1 有、無脈衝複合偏壓之加工比較 45
4-2 不同參數下對孔徑之影響 47
4-2-1 工作電壓之影響 47
4-2-2 進給速度之影響 55
4-2-3 脈衝週期之影響 63
4-2-4 衝擊係數之影響 71
4-2-5 主軸轉速之影響 79
第五章 結論 86
未來展望 88
參考文獻 89
參考文獻 [1]H. Kurafuji, “Electrical discharge drilling of glass-I”, Annals of the CIRP, Vol.16, pp.415, 1968.
[2]V. Raghuram, T. Pramila, Y. G. Srinivasa & K. Narayanasamy, “Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon”, Journal of materials processing technology, Vol.52, pp.301-318, 1995.
[3]I. Basak & A. Ghosh, “Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification”, Journal of Materials Processing Technology, Vol.62, pp.46-53, 1996.
[4]I. Basak & A. Ghosh, “Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification”, Journal of materials processing technology, Vol.71, pp.350-359, 1997.
[5]V. K. Jain, P. M. Dixit & P. M. Pandey, “On the analysis of the electrochemical spark machining process”, International Journal of Machine Tools and Manufacture, Vol.39, pp.165-186, 1999.
[6]B. Bhattacharyya, B. N. Doloi & S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials”, Journal of Materials Processing Technology, Vol.95, pp.145-154, 1999.
[7]C. T. Yang, S. S. Ho & B. H. Yan, “Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM)”, In Key Engineering Materials, Vol. 196, pp.149-166, 2001.
[8]H. J. Lim, Y. M. Lim, S. H. Kim & Y. K. Kwak, “Self-aligned microtool and electrochemical discharge machining (ECDM) for ceramic materials”, In Optical Engineering for Sensing and Nanotechnology (SPIE) , Vol. 4416, pp. 348-353, 2001.
[9]H. Lange, V. Fascio, R. Wüthrich & D. Viquerat, “Three-dimensional structuring of pyrex glass devices–trajectory control”, In International Conference of the European Society for Precision Engineering and Nanotechnology (EUSPEN)Vol.2, pp. 435-438, 2002.
[10]T. K. K. R. Mediliyegedara, A. K. M. De Silva, D. K. Harrison & J. A. McGeough, “An intelligent pulse classification system for electro-chemical discharge machining (ECDM)—a preliminary study”, Journal of Materials Processing Technology, Vol.149, pp.499-503, 2004.
[11]W. Y. Peng & Y. S. Liao, “Study of electrochemical discharge machining technology for slicing non-conductive brittle materials”, Journal of Materials Processing Technology, Vol.149, pp.363-369, 2004.
[12]R. Wüthrich, L. A. Hof, A. Lal, K. Fujisaki, H. Bleuler, P. Mandin & G. Picard, “Physical principles and miniaturization of spark assisted chemical engraving (SACE)”, Journal of Micromechanics and Microengineering, Vol.15, S268-275, 2005.
[13]R. Wüthrich, U. Spaelter & H. Bleuler, “The current signal in spark-assisted chemical engraving (SACE): what does it tell us?”, Journal of micromechanics and microengineering, Vol.16, pp.779-785, 2006.
[14]D. J. Kim, Y. Ahn, S. H. Lee & Y. K. Kim, “Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass”, International Journal of Machine Tools and Manufacture, Vol.46, pp.1064-1067, 2006.
[15]R. Wüthrich & L. A. Hof, “The gas film in spark assisted chemical engraving (SACE)—a key element for micro-machining applications”, International Journal of Machine Tools and Manufacture, Vol.46, pp.828-835, 2006.
[16]J. West & A. Jadhav, “ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities”, Journal of Micromechanics and Microengineering, Vol.17, pp.403-409, 2007.
[17]Z. P. Zheng, H. C. Su, F. Y. Huang & B. H. Yan, “The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process”, Journal of Micromechanics and Microengineering, Vol.17, pp.265-272, 2007.
[18]S. K. Chak & P. V. Rao, “Trepanning of Al2O3 by electro-chemical discharge machining (ECDM) process using abrasive electrode with pulsed DC supply”, International Journal of Machine Tools and Manufacture, Vol.47, pp.2061-2070, 2007.
[19]M. S. Han, B. K. Min & S. J. Lee, “Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte”, Journal of Materials Processing Technology, Vol.191, pp.224-227, 2007.
[20]Z. P. Zheng, J. K. Lin, F. Y. Huang & B. H. Yan, “Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage”, Journal of Micromechanics and Microengineering, Vol.18, 025014, 2008.
[21]M. Jalali, P. Maillard & R. Wüthrich, “Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges”, Journal of Micromechanics and Microengineering, Vol.19, 045001, 2009.
[22]M. S. Han, B. K. Min & S. J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte”, Journal of Micromechanics and Microengineering, Vol.19, 065004, 2009.
[23]X. D. Cao, B. H. Kim & C. N. Chu, “Micro-structuring of glass with features less than 100 μm by electrochemical discharge machining”, Precision Engineering, Vol.33, pp.459-465, 2009.
[24]C. K. Yang, C. P. Cheng, C. C. Mai, A. C. Wang, J. C. Hung & B. H. Yan, “Effect of surface roughness of tool electrode materials in ECDM performance”, International Journal of Machine Tools and Manufacture, Vol.50, pp.1088-1096, 2010.
[25]C. K. Yang, K. L. Wu, J. C. Hung, S. M. Lee, J. C. Lin & B. H. Yan, “Enhancement of ECDM efficiency and accuracy by spherical tool electrode”, International Journal of Machine Tools and Manufacture, Vol.51, pp.528-535, 2011.
[26]C. Wei, K. Xu, J. Ni, A. J. Brzezinski & D. Hu, “A finite element based model for electrochemical discharge machining in discharge regime”, The International Journal of Advanced Manufacturing Technology, Vol.54, pp.987-995, 2011.
[27]M. R. Razfar, A. Behroozfar & J. Ni, “Study of the effects of tool longitudinal oscillation on the machining speed of electrochemical discharge drilling of glass”, Precision Engineering, Vol.38, pp.885-892, 2014.
[28]B. Jiang, S. Lan & J. Ni, “Experimental Investigation of drilling incorporated electrochemical discharge machining”, In International Manufacturing Science and Engineering Conference, Vol. 45813, p. V002T02A056, 2014.
[29]M. S. Cheema, A. Dvivedi & A. K. Sharma, “Tool wear studies in fabrication of microchannels in ultrasonic micromachining”, Ultrasonics, Vol.57, pp.57-64, 2015.
[30]A. B. Kamaraj, S. K. Jui, Z. Cai & M. M. Sundaram, “A mathematical model to predict overcut during electrochemical discharge machining”, The International Journal of Advanced Manufacturing Technology, Vol.81, pp.685-691, 2015.
[31]M. Goud, A. K. Sharma & C. Jawalkar, “A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate”, Precision Engineering, Vol.45, pp.1-17, 2016.
[32]N. Sabahi, M. R. Razfar & M. Hajian, “Experimental investigation of surfactant-mixed electrolyte into electrochemical discharge machining (ECDM) process”, Journal of Materials Processing Technology, Vol.250, pp.190-202, 2017.
[33]Y. Liu, Z. Wei, M. Wang & J. Zhang, “Experimental investigation of micro wire electrochemical discharge machining by using a rotating helical tool”, Journal of Manufacturing processes, Vol.29, pp.265-271, 2017.
[34]X. Kang & W. Tang, “Micro-drilling in ceramic-coated Ni-superalloy by electrochemical discharge machining”, Journal of Materials Processing Technology, Vol.255, pp.656-664. 2018.
[35]M. Singh & S. Singh, “Electrochemical discharge machining: a review on preceding and perspective research”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol.233, pp.1425-1449, 2019.
[36]M. Sundaram, Y. J. Chen & K. Rajurkar, “Pulse electrochemical discharge machining of glass-fiber epoxy reinforced composite”, CIRP Annals, Vol.68, pp.169-172, 2019.
[37]J. Bian, B. Ma, X. Liu & L. Qi, “Experimental Study of Tool Wear in Electrochemical Discharge Machining”, Applied Sciences, Vol.10, pp.5039, 2020.
[38]鄭志平,微電化學放電加工法應用於硼矽玻璃的精微加工技術之研究,博士論文,2008。
[39]楊程光,電化學放電加工法應用於石英的精微加工研究,博士論文,2011。
[40]郭寬淵,應用微量流動電解液於電化學線放電加工石英玻璃之研究,博士論文,2015。
[41]洪榮洲,結合微細放電與電解拋光之微孔加工研究,碩士論文,2004。
[42]許世勳,大面積放電加工技術之研究,碩士論文,2012。
[43]倉藤尚雄、鳳誠三郎著,鄒大鈞譯,放電加工,復漢出版社。
[44]J. Arab & P. Dixit, “Influence of tool electrode feed rate in the electrochemical discharge drilling of a glass substrate”, Materials and Manufacturing Processes, Vol.35, pp.1749-1760, 2020.
[45]V. Rajput, M. Goud & N. M. Suri, “Finite Element Modeling for Comparing the Machining Performance of Different Electrolytes in ECDM”, Arabian Journal for Science and Engineering, Vol.46, pp.2097-2119, 2021.
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明