博碩士論文 90522017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.15.239.0
姓名 黃楹楹(Ying-Ying Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 鑑別導致不同功能性基因表現差異之調控因子組合
(Genome-wide Co-occurrence Detection of PutativeRegulatory Sites Based on Co-regulated GeneClusters in Yeast Genomes)
相關論文
★ 應用嵌入式系統於呼吸肌肉群訓練儀之系統開發★ 勃起障礙與缺血性心臟病的雙向研究: 以台灣全人口基礎的世代研究
★ 基質輔助雷射脫附飛行時間式串聯質譜儀 微生物抗藥性資料視覺化工具★ 使用穿戴式裝置分析心律變異及偵測心律不整之應用程式
★ 建立一個自動化分析系統用來分析任何兩種疾病之間的關聯性透過世代研究設計以及使用承保抽樣歸人檔★ 青光眼病患併發糖尿病,使用Metformin及Sulfonylurea治療得到中風之風險:以台灣人口為基礎的觀察性研究
★ 利用組成識別和序列及空間特性構成之預測系統來針對蛋白質交互作用上的特殊區段點位進行分析及預測辨識★ 新聞語意特徵擷取流程設計與股價變化關聯性分析
★ 藥物與疾病關聯性自動化分析平台設計與實作★ 建立財務報告自動分析系統進行股價預測
★ 建立一個分析疾病與癌症關聯性的自動化系統★ 基於慣性感測器虛擬鍵盤之設計與實作
★ 一個醫療照護監測系統之實作★ 應用手機開發手握球握力及相關資料之量測
★ 利用關聯分析全面性的搜索癌症關聯疾病★ 全面性尋找類風濕性關節炎之關聯疾病
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文標記轉錄因子, 重複序列和工具預測出的黏合序列定位於基因前的促進區域。應用資料探 (Data Ming) 技術於重複序列與轉錄因子的組合以及工具預測出的黏合序列與轉錄因子的組合。再從關聯規則中去除多餘的規則.利用統計方法找出較有意義的,在規則裡的重複序列和工具預測出的黏合序列中找尋可能的轉錄因子。由於不同的轉錄因子組合的黏合會造成基因的轉錄有所不同,因此我們找出不同功能之相關基因較具鑑別性的組合。我們進行的實驗主要是酵母菌及原蟲的基因組上。轉錄因子的研究上,我們得到相當有價值的資訊,並將結果公開在http://dbms68.csie.ncu.edu.tw/REDB/ 網站上。
摘要(英) The data mining approach, mining association rules, is applied to mine the associations from the combinations of candidate regulatory sites and known regulatory sites. We apply a set of statistical algorithms to characterization of the site combinations in a co-regulated gene group and statistically analyzed it to other co-regulated gene groups to find the site combinations which prefer to occur in a specific gene groups with significant occurrences. The regulatory sites of the gene group-specific site combinations are putative transcription factor binding sites. The methodology introduced here facilitates to analyze combinatorial interactions of multiple transcription factors and is applied to two organisms, Saccharomyces cerevisize and Caenorhabditis elegans, and the promoter regions of ORFs of them. The results are now available at http://dbms68.csie.ncu.edu.tw/REDB/
關鍵字(中) ★ 基因表現
★ 調控因子
關鍵字(英) ★ regulatory sites
★ transcription factor binding sites
★ pattern discovery
★ mining
論文目次 Contents
Chapter 1 Introduction 1
1.1 Motivations 1
1.2 Goals 2
1.3 Background 3
Chapter 2 Related Works 5
2.1 Pattern discovery tools 5
2.2 TRANSFAC database 8
2.3 GenBank 10
2.4 RSDB [3] 11
2.5 Functional related gene groups 11
2.6 Co-regulated gene groups 12
Chapter 3 Materials and Methods 14
3.2 Preprocessing phase 15
3.3 Prediction phase 16
3.3.1 Over-represented repeats statistics analysis 17
3.3.2 Known site homologs and DNA binding motifs discovery 19
3.4 Annotation phase 23
3.4.1 Site co-occurrence Analysis 24
3.4.2 Significance filtering 25
3.4.3 Distance filtering 29
Chapter 5 Results 30
5.1 Positional biased of motif groups 30
5.2 Group specific site combinations 31
Chapter 6 Summery 34
References 36
Appendix 39
A. Database schema of web 39
B. Comparison with other approaches 40
C. Enrichment of gene expression clusters for ORFs within MIPS functional categories 41
List of Figures
Figure 1. The transcriptional regulation of a gene. 4
Figure 2. Top periodic clusters, their motifs and overall distribution in all clusters. 13
Figure 3. System Flow 15
Figure 4. Map showing the locations of experimentally verified binding sites of Mat
參考文獻 References
1. Horng, J.T., et al., The repetitive sequence database and mining putative regulatory elements in gene promoter regions. J Comput Biol, 2002. 9(4): p. 621-40.
2. Wingender, E., et al., The TRANSFAC system on gene expression regulation. Nucleic Acids Res, 2001. 29(1): p. 281-3.
3. Horng, J.T., J.H. Lin, and C.Y. Kao. RSDB-A Database of Repetitive Elements in Complete Genomes. in Proceedings of the Atlantic Symposium on Computational Biology and Genome Information Systems & Technology. 2001. Durham, NC, USA.
4. Roth, F.P., et al., Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol, 1998. 16(10): p. 939-45.
5. Bailey, T.L. and C. Elkan, The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol, 1995. 3: p. 21-9.
6. Lawrence, C.E., et al., Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science, 1993. 262(5131): p. 208-14.
7. Sinha, S. and M. Tompa, A statistical method for finding transcription factor binding sites. Proc Int Conf Intell Syst Mol Biol, 2000. 8: p. 344-54.
8. Hughes, J.D., et al., Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol, 2000. 296(5): p. 1205-14.
9. Kel-Margoulis, O.V., et al., COMPEL: a database on composite regulatory elements providing combinatorial transcriptional regulation. Nucleic Acids Res, 2000. 28(1): p. 311-5.
10. Bjorklund, S. and Y.J. Kim, Mediator of transcriptional regulation. Trends Biochem Sci, 1996. 21(9): p. 335-7.
11. Neuwald, A.F., J.S. Liu, and C.E. Lawrence, Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Sci, 1995. 4(8): p. 1618-32.
12. Bailey, T.L. and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol, 1994. 2: p. 28-36.
13. Liu, X., D.L. Brutlag, and J.S. Liu, BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput, 2001: p. 127-38.
14. Eskin, E. and P.A. Pevzner, Finding composite regulatory patterns in DNA sequences. Bioinformatics, 2002. 18 Suppl 1: p. S354-63.
15. GuhaThakurta, D. and G.D. Stormo, Identifying target sites for cooperatively binding factors. Bioinformatics, 2001. 17(7): p. 608-21.
16. Eskin, E., Sparse Sequence Modeling with Applications to Computational Biology and Intrusion Detection. 2002.
17. Kielbasa, S.M., et al., Combining frequency and positional information to predict transcription factor binding sites. Bioinformatics, 2001. 17(11): p. 1019-26.
18. van Helden, J., del Olmo, M. and Perez-Ortin, J.E., Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. Nucleic Acids Res., 2000a. 28: p. 1000-1010.
19. van Helden, J., A.F. Rios, and J. Collado-Vides, Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. Nucleic Acids Res, 2000. 28(8): p. 1808-18.
20. Mewes, H.W., et al., MIPS: a database for protein sequences, homology data and yeast genome information. Nucleic Acids Res, 1997. 25(1): p. 28-30.
21. Costanzo, M.C., et al., The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res, 2000. 28(1): p. 73-6.
22. Tavazoie, S., et al., Systematic determination of genetic network architecture. Nat Genet, 1999. 22(3): p. 281-5.
23. van Helden, J., B. Andre, and J. Collado-Vides, Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol, 1998. 281(5): p. 827-42.
24. Agrawal, R., T. Imielinski, and A. Swami. Mining Associations between Sets of Items in Large Databases. in Proc. of the ACM SIGMOD Int'l Conference on Management of Data. 1993. Washington D.C.
25. Agrawal, R. and R. Srikant, Fast Algorithms for Mining Association Rules. 1994, IBM Almaden Research Center. p. 1-32.
26. Zhu, J. and M.Q. Zhang, SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics, 1999. 15(7-8): p. 607-11.
27. Jensen, L.J. and S. Knudsen, Automatic discovery of regulatory patterns in promoter regions based on whole cell expression data and functional annotation. Bioinformatics, 2000. 16(4): p. 326-33.
28. Sudarsanam, P., Y. Pilpel, and G.M. Church, Genome-wide co-occurrence of promoter elements reveals a cis-regulatory cassette of rRNA transcription motifs in Saccharomyces cerevisiae. Genome Res, 2002. 12(11): p. 1723-31.
29. Matthews, B.W., Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta, 1975. 405(2): p. 442-51.
30. Pilpel, Y., P. Sudarsanam, and G.M. Church, Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet, 2001. 29(2): p. 153-9.
指導教授 洪炯宗(Jorng-Tzong Horng) 審核日期 2003-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明